401723

August 21, 1979

Mr. Theodore Mitchell Executive Director Micronesian Legal Services Corporation, Suite 300 1424 Sixteenth Street, N.W. Washington, D. C. 20036

Dear Mr. Mitchell:

The Department of Energy is pleased to respond to your letter of August 3, 1979, in which you requested copies of a number of records pursuant to the Freedom of Information Act. The following responses are numbered to coincide with your numbered requests.

Item No. 1. The statement is based upon testimony presented by Messrs. DeBrum, Weissgall, Deal, DeYoung and Mrs. Van Cleve, and others at Hearings before Subcommittees of the Committee on Appropriations, House of Representatives, on April 12, May 22, and June 19, 1978. Copies of pertinent portions of that testimony are enclosed (Tab A). Additional relevant information is available in the Hearings testimony conducted by the Subcommittee on July 25, 1978. We do not have a copy of the final transcript of this testimony.

Reports from Brookhaven National Laboratory indicated that the Cesium-137 levels of Bikini residents increased with time until 1978, and decreased thereafter (post-relocation). These data were based upon whole body counting measurements. A summary of this information is enclosed (Tab B). This increase in body burden coincided with increased availability of locally grown terrestrial foods, particularly coconuts. The Cesium-137 measurements suggest that either the quantity of imported food available to the people or the quantity of available imported food consumed by the people was below that level needed to moderate the increase in Cesium-137 body burdens as locally grown foods became available.

Item No. 2. The aerial photographs of Bikini Atoll (which I believe have previously been sent to you) show that the Bikini and Eneu Islands are separated by approximately five miles of reef. At low tide it is possible to walk from one island to the other. Considering the facts

INITIALS/ SIG. RTG. SYMBOL INITIALS/ SIG. RTG. SYMBOL INITIALS/ SIG. DATE RTG. SYMBOL INITIALS TIG. RTG, SYMBOL INITIALS/ SIG. DATE RTG. SYMBOL INITIALS/ SIG. RTG. SYMBOL INITIALS/ SIG. DATE RTG. SYMBOL INITIALS/ SIG. DATE

CONCURRENCES RTG. SYMBOL

BEST COPY AVAILABLE

I.S. GOVERNMENT PRINTING OFFICE: 1979-223-693

that the island of Bikini is the longed-for home of the Bikini people, that houses already exist on the island, and that tens of thousands of coconut trees are on the island, we feel that it is valid to raise the question of whether or not access to Bikini Island can be controlled if the people reside on Eneu Island. (See also previous comments of Mr. DeBrum.) There are no other records covering the request in Item No. 2.

Item No. 3(a). The Department of Energy has no records bearing upon this subject. Inquiries of this subject presumably should be directed to the Department of Interior.

Item No. 3(b). Please refer to the Brookhaven National Laboratory information provided in (1) above. If body burden levels of Cesium-137 were to be equal to or greater than 3 μCi , it would be expected that radiation exposure levels at or above 500 millirem per year would result. This assumption is based upon Publication 2 of the International Commissio on Radiological Protection (Report of Committee II on Permissible Dose for Internal Radiation). In that publication it is stated that the maximum permissible body burden of Cesium-137 (assuming that the total body is the organ of critical reference) for occupational exposure is 30 μCi (see Tab C). Since the occupational exposure limit is 5 rem per year, the body burden of Cesium-137 resulting in an exposure level of 1/10 of 5 rem per year (i.e., 500 millirem per year) is 1/10 of the 30 μCi value, or 3 μCi .

Item No. 4. Lawrence Livermore Laboratory (LLL) currently is in the process of preparing technical articles for publication in the scientific literature addressing these issues. Consequently, the articles as such do not yet exist, and the Department of Energy obviously does not possess them. However, enclosed (Tab D) is a copy of information which the Lawrence Livermore Laboratory sent to the Department of Energy consisting of the food concentrations of radionuclides which LLL used in calculating the dose estimates under discussion.

Item No. 5. The substance of the request addresses the basis of the decision to employ the Federal radiation guidance. The most relevant basis for this is the Federal Radiation Council guidance as presented in the Federal Register over the signatures of Presidents Eisenhower and Kennedy (see Tab E).

The text on page 6 and footnote 10 on the same page address the AEC recommendations for planning at Enewetak, the bases for which are in the Environmental Impact Statement.

ı	CONCURRENCES
	NTG. SYMBOL
	INITIALS/ SIG.
	DATE
	RYG. SYMBOL
	THITTALE STO.
	DATE
	RTG, SYMBOL
	INITIALS/ SIG.
0	DATE
r	RTG. SYMBOL
	INITIALS/ SIG.
	DATE
	RTG, SYMBOL
	INITIALS/ SIG.
:	DATE
;	RTG. SYMBOL
	INITIALS/ SIG.
}	DATE
	RTG. SYMBOL
	INITIALS/ SIG.
	DATE
	RTG, SYMBOL
	INITIALS/ SIG.

DATE

August 21, 1979

Item No. 6. Lawrence Livermore Laboratory (LLL) is in the process of preparing this document. It is not yet available. The dose estimates were provided by LLL, however, and copies of what the Department received are enclosed (Tab F).

Item No. 7. In response to your FOI request in Item No. 7, the records you requested are at the Lawrence Livermore Laboratory. They are in the process of being assimilated. As soon as they are forwarded here, it will be determined whether they can be released and you will be promptly notified. We anticipate no problems at this time.

Item No. 8. Risk estimates of somatic or genetic consequences of various radiation exposure levels were not made. Risk estimates for some of the radiation exposure values identified (i.e., 170 millirem per year and 5000 millirem per 30 years) are given in the summary statement of the National Academy of Sciences-National Research Council's Report of the Advisory Committee on the Biological Effects of Ionizing Radiation (Tab G).8/21/79

The Atomic Energy Commission Task Group Report published in the Enewetak Environmental Impact Statement, Volume II, Tab B, pages III-11 and 12 provides a somatic risk assessment for a radiation exposure of 250 millirem Brown per year, the recommended radiation protection criteria for the whole body and for bone marrow.

Item No. 9. No such documents exist.

We trust that this information is responsive to your request.

Sincerely,

Bruce W. Wachholz, Ph.D. Office of Environment

7 Enclosures

bcc: Mrs. Van Cleve, DOI

Mrs. Clusen, ASEV

Mr. Hollister, ADASEV

Mr. Whitnah, OMS

Dr. Weyzen, OHER:

Mr. Deal, OESD

Mr. McCraw, OESD

Mr. Brown, OGC

Mr. Gelband, AD-44

RTG, SYMBOL OTI:PAD Watehborz DATE DI 8/21/79 RTG. SYMBOL OESD. INITIALITY NO McCraw DATE 8/21/79 RTG. SYMBOL -QESD OGC 15 TRIVIALED STOT 8/21/79 RTG. SYMBOL INITIALS/ SIG. DATE RTG. SYMBOL INITIALS/ SIG. DATE RTG. SYMUOL INITIALS/ SIG. RTG. SYMBOL INITIALS/ SIG.

CONCURRENCES

EV 64620

A

TAB

A

standards?

Mr. Drai. They were but the radiation dose from intake of food

had begun to rise.

Mr. YATES. Did any go over the top?

Mr. Deal. None of the people have gone over the top as far as the cesium levels. They are very close to the maximum allowable dose from the maximum of permissible amounts of cesium.

Mr. YATES. Are the people living in the houses along the road? Mr. Drat. Yes, and they are getting the radioactivity in their bodies

from their diet, from eating the locally grown foods. In retrospect, this is probably the big mistake made in the beginning of the resettlement program in that we made recommendationwhich turned out to be impractical in the sense that to have gardens growing but then tell the people not to eat the products.

Mr. YATES. Was he told to grow his garden and eat that food? Was

he told that he could do that !

Mr. Deal. The original recommendations prohibited eating certain

of the local foods.

Mr. YATES. This is right. But I think I read here the houses were built on pads of coral and that they were told not to eat the coconut crab. You say you brought in outside foods at the initial stages.

Was this to cut down on the possible intake of radiation residuals?

Did you bring in outside food from the start!

Mr. DEAL, Yes, sir.

CURRENT FEEDING PROGRAM ON BIRINI ISLANDS

Mr. Y. res. I guess outside food is still being brought in. Mr. DE YOUNG. It was not until early last year, Mr. Chairman, that the tree come and some of the other vegetable crops began to become fully productive. So up until 1977 they had been existing primarily on food products that were brought in from the outside. Some of these were surplus agricultural commodity foods plus the local marine food which had been certified to be suitable.

MONTTORING OF BUKINT ISLAND

Mr. YATES. When did they get the cessium then!

Mr. DE YOUNG. As Mr. Deal indicated, when this high level of cesium was revealed, a series of analyses were carried out.

Mr. YATES. When was it revealed?

Mr. DE YOUNG. in 1976

Mr. YATES. Then the Department—were you still the AEC in 1976!

Mr. DEAL We were ERDA in 1976.

bir. TATES. So you became a little more alarmed than when you were the Atomic Energy Commission. In 76 von first encountered this kind of a test. Is this an annual test that you had been making of the people!

T. DEAL Yes Bir. Mr. Tares. What kind of tests, monthly, semiannually, every four months or what?

Mr. Drail I can supply you a statement for the record. I will give you some information and we will supply a summary. [The information follows:]

Chronology of Rediclogical Eurocys-Bikini Atoli

Your and type of survey

August 1964; Early radiobiological sur- Photographed and identified organisms ver of Bikini and Enewetak Atolla conducted by the University of Wash-ington for AEC. Measurements and sampling were directed toward external radiation, soils, plans, water, and fish

April 1967: Survey to fill in gaps in data. Major contributor to total exposure on in order that dose estimates can be made for Bikini Atoli residents Team led by University of Washington, External radiation measurement by the AEC Health and Safety Laboratory. BASI.

February 1967. Survey work done concurrently with cleanup operations by University of Washington scientists for AEC, and by adentists of the Western Environmenta! Besearch Laboratory of the Environmental Protection Agency, EPA, under a memorandom of understanding with AEC.

June 1970: Team led by University of Washington with participation by Staff of the Public Bealth Service and AEC. Collection of the first air samples. Also collected soils, plants, animals and made additional external redistion measurements.

May 1972: Followup survey conducted after cococuts planted on Bikini and Eneu Islands and housing construction started on Bikini Island Team led by University of Washington with participation by scientists from the Western Environmental Research Research Laboratory, EPA, and AEC. Team performed air sampling, collected solls, plants, animals, and made external radiation measurements.

April 1974: Followup survey of numerous Atolia including Bikini, conducted jointly by staff of University of Washington and Brookhaven National Laboratory for the AEC. The survey team collected samples of solls plants, animals, ground water, and made external radiation measurements

November 1974: Survey of numerous Atolls conducted jointly by University of Washington and Brookhaven National Laboratory for the AEC. Samples of soil and food collected along with external radiation measures. prements.

Pladings

on reefs and islands. No gross anomalles seen in plants and animals due to radioactivity. See UWFL-83.

Bikini and Enep Islands is Cs-137. Levels vary considerably from island to island in the Atol!. See HASL-190.

Confirm earlier survey results for external radiation. Cs-137 and Sr-90. predominate in terrestrial organisms. Co-60 and Fe-55 in marine organisms. See NYO-269-8.

Confirm earlier survey results. Levels of Pu in air are two orders of magnitude below FBC guides. 8WRL-111r.

Radioppellde levels slowly decreasing Earlier estimates confirmed by these data.

SSee BNL 50474 and NVO-269-32 1.

See NYO-269-32 ' and BNL 50796 in Dress.

April 1975: Preliminary survey of Bikini and Ener Islands conducted jointly by University of Washington and Brookhaven National Laboratory for ERDA Screening survey of external radiation levels and collection of some soil and vegetation samples in preparation for a major survey later

this year.
June 1975: A major fine grid survey of Bikini and Eneu Island external radistion levels was conducted by Lawrence Livermore Laboratory for ERDA with participation by scientists from EPA. University of Washington. Brookhaven National Laboratory, and ERDA. Also samples of soil, plants snimals, and cistern and ground water were collected.

April 1976: A survey of external radia-tion levels on Nam Island, the 3d largest island at Bikini Atoll. conducted by Brookbaven National Laboratory for ERDA.

September 1976. Conduct of a joint survey of 5 Atolls including Bikini hy University of Washington and Brookbaven National Laboratory for ERDA Surveyed external radiation levels and collected environmental

mamples.
April 1977: Site visits by Brookhaven National Laboratory to plaz installation of windmill powered air mampling stations Bikini Atoli one of four sites for long-term air sampling. Work supported by ERDA.

October 1977: Brookhaven National Laboratory installed wind-powered long-term air sampling station on Bikini Island. Work supported by DOE

See NVO-266-32 and BNL 50790

Exposure rates on Bikini Island highly variable Eneu Island dosrates lower than Bikini, cistern water on both islands is acceptable for drinking Some well water acceptable, other wells unacceptable for drinking. See: UCRL-51971. 51879 Rev. 1, 51913 Pt. 1, 52176. 51879 Part 2, 51879 Part 3, 51879 Pt. 5, NVO-269-32 and BNL 50746. To be published

To be published

Bite identified, agreement obtained

Data not yet available.

)'ear

Sempling Counting:

1870': Pooled prine collected, analyzed for Sr-90, Cs-137, and Pu-239, 1871': Pooled prine collected analyzed for Sr-90, Cs-137, and Pu-239, 240, 1872': Pooled prine collected. Cs-137 concentration above factor of 4 increase over 1970. Sr-90 increase is factor of 2.

In 1923 Counting and Trine Bioassay Sampling—Bikini Atoll

1973 ': Cs-137 in urine higher than 1970 by factor of about 10. Sr-90 increase is factor of 4.

April 1874 : First in vivo counting of Cs-137 in Bikini residents Cs-137 urine values about same as 1973. Sr.90 levels down near 1970 values. Pu-239, 240 higher than 1971 by factor of about 5.

April 1975 : Po-238 240 higher than 1971 by factor of 10."

Fall 1976: Pu-238, 240 higher than 1971 by factor of 2.1 Cs-137 urine values

¹ Results from several apriers published in one report Br-90 and Cs-137 are dominant in it terrestrial environment. Co-60 and Pe-57 in marine environment and Am-241 and 205-240 are important in soils. Eadjoactivity on Birini Atoli has declined significantly

Tampling ser, different individuals at different times as people come and go at Blain!

take of the BNL 50424. Rept 1975.

There is results suspect, samples may have bee contaminated error in measurement is \$200.000.

higher than 1970 by factor of about 30, Br-90 higher by factor of about 5. Memo Conard to Liverman, May 11, 1977.

May 1877. Second in vivo counting of Bikin' residents. Collection of large volumes urine samples results suspect. The average Co-187 burden for 22 individuals in 1977 is 10 times the average for 8 individuals in 1974. Two individuals had body burdens of Ca-137 of 88 nCi/kg which is very near the maximum permissible burden of 43 nCi/kg Memo Conard to Liverman, May 11, 1977.

October 1977 : Large volumes urine samples collected under controlled conditions to avoid cross contamination. Begults to be available in May 1978.

Mr. Deal. We made resurveys of the Bikini environment, including soil and groundwaters in 1969, 1970 and 1972. Annual collection of urine samples for radiation analysis began in 1970, and with those people who were working for the agricultural and housing projects.

Mr. YATES. Are these only Bikinians?

Mr. Deal. Yes, sir. Mr. Yates. Did you have non-Bikinians working for them at that time ?

Mr. DEAL I can't answer that, sir.

Mr. DETOUNG. It is my understanding that there were other Marshallese in the work force who were not from Bikini.

Mr. YATES. You examined them as well. Were they examined through that time?

Mr. DE YOUNG. Yes, as long as they were on the island.

Mr. YATES. Go ahead.

Mr. DEAL. We later included collections from the people who had returned to living in the houses: monitoring the Bikini residents was done by whole body counts in 1974 and 1977.

Mr. YATES. What is a whole body count?
Mr. Deal. That is a very sophisticated counting system where you essentially sit in a chair and where you have a counter that detects radiation from the cesium that has been taken up in the body. It actually counts the body's burden of cesium.

Mr. YATES. Is that the same strontium?

Mr. Drai They travel together in the body. You can see that the strontium is-

Mr. YATES. These are like the heavenly twins.

Mr. Drat. You can measure the strontium with urine samples, but we have not been able to see much of that in the urine samples available to date. They do the whole body counting sample for cesium. We had a major resurvey of Bikini and Eneu Islands in 1975.

RESULTS OF THE 1975 RADIATION SURVEY

Mr. YATES. Until '75 you found nothing. What did your tests show?

Mr. Deal. That is when we began to see the rise in the cesium. Mr. LATES. Will you place in the record a statement representing the levels you found?

[The information follows:]

	MALES			FEMALES			
	Ño.	**1ىر	nC1/kg body wt.**	No.	C1س	nC1/kg body wt.***	
Bikini	8	.128	1.84 (0.43-5.11)	13	.073	1.15 (0.22-3.26)	
Utirik	9	.262	4.05 (2.64-6.84)	. 13	.133	2.13 (0.96-3.85)	
Rongelap	22	.475	7.76 (4.37-16.3)	24	.304	5.13 (2.71-13.46)	
BNL med. te	20m 4	: 003	0.0352 (0.01340791))			

^{*}Reference - BNL50424, "A Twenty-Year Review of Medical Findings in a Marshallese Population Accidentally Exposed to Radioactive Fallout," Conard, September 1975.

^{**}Microcuries

^{***}MPC 43 nanocuries per kilogram

1046

FEMALES

	No.	μC1**	nC1/Kg Body Wt***	No.	μC1	nC1/Kg Body Wt
Rongelap	34	0.296 +0.11**** (0.113-0.680)*	5.04 · <u>+1.97</u>	20	0.182 +0.055 (0.097-0.278	3.13 <u>+</u> 1.1
Utirik	27	0.119 +.048 (0.050-0.215)	1.79 <u>+</u> 0.77	21	0.0781 +0.032 (0.038 ¹ 0.131	1.29 +0.58)
Bikini	22	1.301 +0.73 (0.568-3.232)	19.1 <u>+</u> 10.6	20	0.926 +0.47 (0.534-2.234	14.8 <u>+6.3</u>
Medical Team	7	.00154 <u>+</u> 0.00052	.0195 <u>+</u> 0.006			

*Reference memo Conard, BML, to Liverman, May 11, 1977
***Microcuries
***Nanocuries per kilogram of body weight
****Standard deviation

(.00705-.00216)

^{*****}Range

MEAN CER UM-137 BODY FURDENS IN MARSHALLESE CHILDREN - 1977*

MAL S			FEMALES				
	No.	nct++	nC1/Kg Body Wt***	No.	JIC1	nC1/Kg Body Wt	
Songelap	5	0.217 +0.04***** (0.T68-C 7:6)	7.65 <u>(</u> 1.21	5	0.265 +0.0 92 (0.754-0.396)	5.97 <u>+</u> 2.1	
Utirik	5	0.0663 +0.018 (0.049-0.091)	2.22 <u>+</u> 0.66	5	0.0843 -+0.024 (0.051-0.108)	2.84 <u>+</u> 1.1	
BiKini	3	1.04 +0.26 (0.824-1.331)	32.3 <u>+</u> 7.6	3	0.861 +0.29 (0.706-1.196)	22.3 <u>+</u> 15.3	1177

^{*}Reference memo Conard, BNL, to Liverman, May 11, 1977

^{**}Microcuries

***Manocuries per kilogram of body weight

^{****}Standard deviation

^{****}Range

Mr. YATES. Then in 75, all of a sudden now that you are ERDA you find the rise

Mr. Drai. In 75 we were asked by the Department of Interior for advice on building additional houses in the interior of Bikini Island.

It was at that time we mounted a rather large survey effort which included a lot of people going out and walking around the island with instruments. We have very large surveys done at that time with 30 or 40 people going out and making measurements of the soil, water samples, vegetation samples, and measuring the external radioactivity.

Mr. YATES. Were these tests being taken prior to 1975 as well?

Mr. Dru. Yes. But not anywhere near the scale we did this time. We concentrated on Bikini Island. It is precisely for this reason we want to have an aerial survey because we can cover much more territory and much faster and we can see the same levels.

When you have a person walking around, it takes more time.

Mr. Duncan. I understood you to say that this rise in the level of measurements of strontium began in 75 and that your preliminary analysis indicates that it is coming from the food source and that that food source began to mature last year.

How can we measure the increase in 75 when you say that it is com-

ing from the food if the food wasn't being produced until '77?

Mr. DEAL. That is a very good question.
Mr. McCraw has done a lot of those surveys.

Mr. McCrew. When the people first returned, there were few if any terrestrial food items grown in Bikini Island soil, and available for their use. There are some things that grow wild. There were a few coconuts and arrowroot. There was a significant planting of coconut trees during the arigcultural rehabilitation effort.

Mr. DUNCAN. Those were the ones that began maturing in 76? Am I not correct! We are in '78, so last year would have been '77. But now he is saying that the planting began to mature and it was '76, so we are

narrowing the gap.

Mr. DEYOUNG. It started in '76.

Mr. Duncan. It could be coconut or arrowroot that was being consumed prior to 76. You began to notice a rise in the levels of cesium and that those levels have risen more rapidly since the domesticated plants matured and were consumed by the inhabitants.

Mr. McGraw. We were initially using a predictive capability for a number of items in the diet that are now growing in the atoll. All we could do at first was sample the soil and try to predict the levels in

food.

Mr. YATES. Where were they coming from? You said a number of

items were not being grown.

Mr. McGraw. A number of items of the normal diet were not locally available when the people first went back. Those things have subsequently become available and we are seeing an increase in availability, an increase in uptake, and you can't see at what exact point in time things occurred.

Mr. Duncan. Is there a level of sophistication to measure this that has been increasing? So we might attribute the greater levels to a

greater ability to measure what was there all along?

Mr. Deal. Yes, and measure it easily. You can always measure if you took samples of soil and vegetation and went through a very costly

laboratory procedure. But now we can do the same thing with instruments that are stationary.

CURRENT METHODS OF MONITORING

Mr. DUNCAN. What about the measurement of the levels of resimm in the body of the Biginians! Is that increasing in sophistication so that your measures can detect levels that were previously undetect-

Mr. Dr. Let me answer that a little differently. Several years ago no one would have thought you could take a whole body counter into the field. Now it is engineered to be taken out into the field.

Mr. Duncan. You did early in 1975. But your first whole body count

began in-

Mr. McCraw. 74. Mr. Yates. Is that when you first detected the increase?

Mr. McCRAW That is the first measurement of cesium in people. We had predicted what the levels would be.

Mr. Duncan. Were your measurements in accordance with the pro-

diction?

Mr. McCRaw Yes. All of the surveys that we have done have tended to support the earlier findings. We have gotten a better body of data and more confidence in the radiation doses we are predicting, and we are looking at the actual items of the diet and do not have to rely on estimates of radioactivity in the foods that the people are eating.

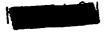
Mr. Duncan. But your whole body counts in 74 were not alarming. It wasn't until you went back in 75 with your major resurvey that you

saw the rise begin?

Mr. McCraw. In 1975 we began to predict higher doses on the basis of samples we had collected. In 1977 when the second whole body count was done the levels were a factor of ten higher than in 1974.

PEDERAL STANDARDS AND CURRENT BIKINI LEVELS

Mr. YATES. Above the Federal standards?


Mr. McCraw. If I might explain about the standards. There are two numbers. One is for the local population. The other is for an individual where you know the individual's exposure. We have not exceeded that individual number. We have seen levels approaching this lower number for the general population. We feel that we can use the higher number or the standard because we are actually measuring the levels of radioactivity in individuals in the population. We know the distribution. We know the highs and we know the lows.

Mr. YATES. Who is to say that the Federal standards are accurate?

How do you know the Federal standards are acceptable?

Mr. Drat. We don't.
Mr. Yarrs. Why do you establish standards and say if you come to the mendard merything is fine, and if you go above this standard it is ... The How do you know the Federal standards are not carcinogenic?

Mr. Dran I think in the radiation protection field that we are concerned with we have another philosophy which is the lowest practicable solution to a problem and it is believed that the people who work with radiation will not receive-

Mr. Dencan. If we gave a whole body count to Mr. Yates right now, would your sophisticated measurements show some level of ossium in him!

<u>ir.</u> McCeaw, Yes.

Mr. McCraw. 166. Mr. Duncan. Do you have any way of knowing that he will not get cancer!

Mr. MoCraw No.

Mr. Duncan. That is all I have I have to go to another committee. I just wanted to worry you.

Mr. YATES. Wait one half minute for my question.

Getting back to my comment about the rederal standards, my son was treated for a tonsil disease in 1944 by then applicable medical standards. He was given radiation in the treatment of his tonsils. Everyone thought it was great. It was a common medical practice. Thousands of young people were having their tonsils removed or shriveled as a result of this treatment. He, like all the others of that age group, are now threatened with cancer because of having been irradiated 25 years ago. So now these people—I assume the radiation he received may have been comparable to the ingestion of cesium or strontium.

The thought occurs to me, and I talked to the cancer specialists at NCI in connection with some of the herbicides and additions to food, and they say amounts really don't mean very much at any particular time. The question is what will be the effect 25 years from now as a different kind of stimulant or carcinogenic material is brought to bear on the body.

So getting back to the question of Federal standards, five years from now you might decide in the new Department of Energy that the levels you established are much too high and that you should establish lower standards because you have, as Mr. Duncan pointed out, more sophisticated equipment.

Mr. McCerr. It is not a problem of being able to measure the dose

level. It is knowing the effect.

Mr. YATES. You might go now.

Mr. Duncan. It is a question of exercising our best judgment. I would suggest that five years from now you might even be able to sustain even lower levels.

Mr. McCraw We are looking at 30 year standards, to keep the dose down for a long period of time. We are trying to keep the dose in a year below the annual standards, and all the 30 year doses below the 30 year standard.

SAFETY OF BIKINIANS UNDER PRESENT CONDITIONS

Mr. YATES. That brings us to the question at hand. What are you going to do? You have the level of cessium and strontium in the Bikiniers rising over the years. They are still on their island.

Have you told them to get off! For your own good, you ought to move

Mr. Drai Mr. Chairman, I don't know that anyone thinks that this is a life threatening situation at this time.

Mr. YATES. Really? Mr. Drue It is the kind of thing that if you let it continue over a long period of time then it would begin to be of hazard to their health.

Mr. Varre Whe' hoppened to Mr. Pincus' article on March 19 h where he says—the article is titled, "U.S. Erred on the Screty of Return to Bikini Island."

Nine years ago the U.S. Government told the Bikinj Islanders it was safe to return to their atoll, once the site of nuclear weapons tests in the Pacific Some of the islanders went home But now the government has found that it was wrong According to tests last year the groundwater in Bikini is still too radioactive for human consumption. So are the coconuts and fruits and vegetables grown in the still contaminated soil. So the Interior Department has very quietly asked Congress for \$15 million to move the islanders to another location.

Why are you asking for more money if it is safe! Is it safe! Safe is a relative term, isn't it!

Mr. Drat. Yes, it is. If it was practicable for the people to only eat outside food and maybe have to drink outside water, then we think that goes within the Federal standards, and that is the only guideline we have to go with.

Since that is not a practical solution and we do see a rise in the cesium in the whole body counting, we believe that they should not be allowed to eat the food on the island, and it is probably not a practical situation. Any additional resettlement should be on Encu Island where they can have their schools and other facilities. That is the direction they should move and not try to do that on Bikini Island.

Mr. YATES. Should they stay there is the question. Who is exercising the judgment on whether they should stay there! Haven't the levels been increasing! Our friend has said they are almost up to the top of the Federal standards. If they stay there, won't they go over the top!

Mr. Deal. The whole question is, if they were to not eat the locally grown rocas on Bikini Island, would the radiation dose from cesium go down?

Mr. YATES. What will you do, bring in box lunches?
Mr. Deal. That is the impractical part of the solution.

CURRENT FEEDING PROGRAM ON BIKINI

Mr. Winnel. If I might speak to this part of the discussion, because it brings in the present time period. What is being discussed illutrates, as you have pointed out, one of the difficulties of administration. Decisions must be based on available information. Our decisions have to be based on the information which you have been given, which I also have been given, by representatives of the Department of Energy that local conditions would be safe if ample outside food supplies were provided for the people on the island. In addition, we provided equipment for fishing in the lagoon. The outside food is sent in on a regular basis. These food supplies, while not attractive in all respects from the point of view of the normal diet, because some USDA preserved foodare included, provide a food standard which is in terms of nutrition far above the average as far as diet in the Trust Territory is concerned.

Mr. Yarrs. What does that mean! You deliver K rations to them! What kind of food are you talking about!

Mr. Winker. Dried foods, fresh fruits and vegetables from Ponape. as varied a diet as far as protein, starch, carbohydrates is concerned. It is prepared by nutritionists.

Mr. Dr. v. I don't know why they don't count the All Dec. It may not passion of sitting stat.

Mr. Yarns. Why is that?

Mr. De Young. I am informed by the medical authorities at Brookhaven, that the children under 5 are too small to be subjected to the whole body counts.

Mr. Yares, Why?

Mr. DE YOUNG, I don't know whether it is the size of the child or whether the measurement itself might have some effect on the child, but the whole body count is not given to children under 5 years.

Mr. Yarns, Is there an application of some kind of radiation in the test itself?

Mr. Deal. No. sir. Mr. Yates. Then why don't they give it to the children?

Mr. DE YOUNG, Dr. Weyzen from D.O.E. is here.

Mr. Deal. This is Dr. Weyzen from our medical group.

Dr. Wryzen, There are two problems. One involves lying still for about 20 minutes. I think that is a problem with the condition A to the

serious problem is the calibration of the instrument. It is a second brated for small persons. You we are errors one for inco-

MI. LATIS. For all we know, the children may have been contaminated too?

Mr. Deal., Yes, sir, If they have been drinking the coconut milk.

CAUSES OF RADIATION EFFECTS ON BIKINI ISLAND

Mr. Duncan. What accounts for the rather extreme variations, from 0.270 which is within your limits to 1.180?

Mr. Dext. I am at a loss to answer that, Mr. Duncan, unless the possibility that some of them didn't cat as many coconuts or drink as much coconut milk. There could be some variations of some kind in their metabolism. I really don't know.

Mr. Yates, Ploes anybody know!

Mr. McChaw. Yes, I know. Basically two things account for the variation. One is just now much of the various locally given it is various individuals are eating. The other is that solar of the peak laxe been living on the island longer that the peak peak is the peak of the peak peak did not return on himse to live or the island. In a came has a few at a time message period of several powers.

Mr. Yates, Starting when!

Mr. McCraw. About 1972. I believe, the earliest ones came in about 1972, so some people have been there 6 years, some 5 years, some beveloch there 1 year or less. The body burdens of cessone beginnings a function of time, so the individuals in the population that have been there the longest and have been eating the largest quanties, basicary of resount, have the highest burdens and are receiving the highest radiating expression.

Mr. YATES. I have the impression that you told the committee that in 1977 you suggested to the people on the island they ought not to eat the food there, but that you would provide the food from outside ources. If that is true, why did the court nevertheless go up in 1978?

Mr. Deal. We understand that they have been cating cocounts. I wasn't there so I am telling you what survey team members repeated

to us. They said that the wornle have been rating had a drought, and a shortage of fresh water, and they were durking more of the cocolait milk than they might ordinarily.

OUTSIDE FEEDING PROGRAM FOR BIKINI RESIDENTS

Mr. YATES. Did they eat the coronuts and did they drink the milk because you weren't providing them with adequate food and water? Mr. Deal. I will have to defer to our friends in Interior or mist wa- provided.

Mr. TATLS. Will somebody answer that? Who are his friends in Interior :

Vr. Dral Jeminot sure.

Mr. YATES Appeared y you don't have any friends.

Mr. DEAL I was a fraid of that.

Mr. Yaras. Somebody ought to answer that question.

Were you on duty then. Mr. Winkel? When did you take office?

Mr. WINKEL. I took office in June of 1977.

MI. YATES. Who did you have in charge of this operation?

Mr. Winkel. I was in charge of the operation, and under me the District Administrator was in charge of the operation. The feeding program was initiated in October and November of 1977, and ample food supplies to provide a balanced diet were delivered, have been delivered. Nutritionists accompanying these supplies and staying with the people for a period of time to help them and assist them in the utilization of the food and so forth. We have no reason to believe the food was not consumed, inasmuch as there is no evidence of unconsumed quantities in any size at all.

Mr. YATES. What kind of food did you deliver to them? Did you

al-o deliver water to them?

3. Tiss T.S. Department of Agriculture foods, and fresh foods from Fonage, and water was delivered. I do not know myself in what quantities.

Perhaps the District Administrator could respond to that, because

he has accompanied one of the shipments in the first instance.

Mr. Yarrs, Let's hear from him.

What we are trying to find out is why they went back to the coconuts and the min if they were warned against ealing the coconuts and the million

Mr. O. DEKRUM. I am the Deputy Administrator of the Marshall Islands. 4

Coconut is something that the people can see. They will drink the nolk. They do that even when we visit the island periodically. They offer is coccurts to drink, so as long as they have coconuts in their

11.4 to believe that they will drink it.

on in the face of warnings not to drink it? ATL

Mr. O. neBri M. Yes, sir.

Mr. YATES. Then they continue to eat the coconut and drink the milk

and cat the food that the government gives them.

Mr. O. pr.Brum. The last time I was there they were still eating the coconuts. They have been told not to eat them. To stop them from eating that, sir, we have to remove the people from the islands or cut down

total number of trees.

.. YATES. I hat is the only way you can do it.

DESIRE OF BIKINIANS TO REMAIN ON BIKINI ATOLL

Mr. YATES. Your letter indicates that the Bikinians want to stay on the stoll. Is that impossible?

Mrs. VAN CLEVE. In our judgment, it would be improper for them to remain because of the medical risks involved, and the Department

of Energy agrees with that conclusion.

Accordingly, we mean to persist in our plans to relocate them, this in the interests of their physical safety. We recognize, of course, their preference to remain. That is why we have had this problem for some 30 years and if will continue for some decades hence. We are simply trying to meet it in the most reasonable way we know, recognizing the physical threats that exist if they remain on Bikini Island.

CATSES OF RADIOACTIVITY ON BIKINI ATOLL

Mr. YATES. Let's look at it a minute before we go to the High Commissioner's statement.

The reason they cannot remain there is because of the radioactivity of the coccourt and water. It was the feat the intake, rather than the external causes that was the maddens is that course?

Mrs. VAN CLEVE. I believe it is a combination of both.

Mr. Yares. That wasn't Mr. Deal's testimony the last time. As I remember his testimony the last time, it was internal causes rather than external causes; is that right. Mr. Deal?

Mr. Dr.M. I think maybe both are right. The external radiation has to be considered. The internal is so had, that it overshadows the external

Mr. YATES. How potent is the external; and suppose you did not have the internal radiation? Would it be feasible for them to remain? Mr. Deal. The external radiation is about like Denver Colo.

Mr. YATES, It would be as dangerous as Denver, Colo., is to those who live in Denver?

Mr. DEAL. Yes, sir.

Mr. YATES. They are not evacuating the city of Denver, are they?

Mr. DEAL. I hope not.

Mr. YATES. So, therefore, the amount of external radiation in the city of Denver is not considered sufficient for that city to be evacuated. I assume, therefore, that if that is the same condition on Bikini, the basic cause for your suggestion or your recommendation that Bikinians be evacuated is the ingestion of the food and the water; correct?

Mr. Dr.M. les. str.
Mr. Yates. Now if the Bikinians wanted to stay there, stay on their atoll, if they did not consume the water and the food that was there. I would deduce from what you say that it would be as dangerous for them to live on Kili or Jaluit or any one of the other islands as it would on Bikini, right?

Mr. Deal. Yes, sir, the other islands are quite-

Mr. Yarrs. That one us to the basic question then: Can you feed them and give them water from other sources that would permit them to stay on Bikim so that they would not be taking in the radiated food

Mr. Dr. M. If you ask my opinion. Mr. Chairman, I have personally concluded that it is probably impractical to have people living in

an area where they are able to farm it and to take the water from the area. I think that is a practical situation.

CONTAMINATION OF FOOD SOURCES

Mr. YATES. Suppose you were to plant other coconut trees. How long does it take coconut trees to come?

Let's ask the next question. We talk as though coconuts were the only food there. Isn't there other food?

Mrs. Van Cleve. There is, indeed,

Mr. YATES. What other foods do they eat!

Mrs. Van Cleve. Breadfruit, papaya, sweet potatoes.

Mr. YATES. Are all of these containing od!

Mrs. Van Cleve. All of these have turned out to be contaminated when grown in Bikini.

Mr. YATES. That is because of the soil being contaminated?

Mrs. Van Cleve. That is correct.

Mr. YATES. And the contamination in the soil is transferred to the food, and there is no way they can grow food without it being containmated: is this composit

Mr. Deal. That is correct.

Mr. YATES. How much of a chore is it to bring food in from the outside? Suppose it were a barren atoll; they didn't have the oppor-

tunity to grow things

Mrs. VAN CLEVE. I think it is entirely feasible to bring food in from the outside. What we believe, however, also to be true is that it is not feasible to expect Parthe Islanders to live on an island to not eat the things that are growing there and not divertise v is toos. We could feed their entirely from outside somes. could not bar them cas mively from eating local pro lines.

CONTAMINATION OF GROUND WATER

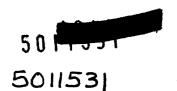
Mr. YATES. How do they get their water now? What is the water

that is contaminated? Is it from wells?

Mrs. Van Cleve. It is a groundwater supply as I understand it, yes. Mr. Dean. My understanding is that there are some cisterns too. some runoff water from rain, but I think it is the wells too. They have to use the wells under certain conditions. There isn't enough cistern water.

Mr. YATES. There is not enough eistern water. The eistern water is not contaminated, is it?

Mr. Dr.y.. Not to any extent to cause them this kind of problem, sir. The Ludth well water is contaminated?


Mr. DEAL. Yes. sir, it is.

Mr. YATES Is there any way of decontaminating the well water? Can you boil the contaminants out?

Mr. Deal. No. sir. It would take a very sophisticated evelent of resins used in chemical processing to remove the radioa-tivity.

Mr. Tarrs. How difficult and now expensive is it?

Mr. Dry. I really don't know. We have never looked at that problen, that I know of, except back during the fallout days there was a questic s about decontaminating milk, and there was some looking at

LOCAL FOODS BANNED IN 1974

Mr. YATES. We are now up to 1976. Let's go back to the interrogation on page 1171:

"Mr. YATES. Were you still the AEC in 1976!

"Mr. DEAL. We were ERDA in 1976.

"Mr. Yares. So you became a little more alarmed than when you were the Atomic Energy Commission. In 1976 you first encountered this kind of a test. Is this an annual test that you had been making

of the people?"

Of course, in retrospect now my question is not correct, because you knew about it in 1974. You knew about the water certainly in 1974. In 1976 the coconuts were first becoming ripe. Mr. deBruin, together with the Bikinians, was eating the coconuts. But you were not drinking the water?

Mr. DEBRUM. Not the well water,

Mr. YATES. Were you enting the pandanus in 1976?

Mr. DEBRUM. Some people ate them.

Mr. YATES. They are the pandanus. What else was growing there?

Mr. DEBRUM. Papaya was growing on the island.

Mr. YATES. Papaya. Anything else!

Mr. DEBRUM. Pumpkins. Mr. YATES. Pumpkins?

Mr. DEBRUM. Yes.

Mr. Yarrs. And people were eating all of these things, all the vego.

Mr. DEBRUM. We had indication that some of them admitted they ote them, sir.

Mr. Dates. They ate them? Mr. DeBRUM. Les

Mr. Yares. And were voutold you were not to eat them?

Mr. DeBrum. They were told that it was questionable, sir, and not to ent them.

INITIATION OF TIPL FEEDING PROGRAM

Mr. YATES. And all during the period starting in 1972, every month a ship came to Bikini with food!

Mr. DEBRUM. Yes.

Mr. YATES, And water?

Mr. DeBrum. No. no water.

Mr. YATES. Just food!

Mr. DEBREM. Yes.

Mr. Yares. So they were drinking the cistern water?

Mr. DEBRUM. Yes.

Mr. YATES. And you were supplying them with food. Were you supplying them with enough food!

Mr. DeBrum. At times: we tried to supply them with enough. There were times when we could not get there in time, sir.

Mr. TATES. So in the meantime they had to cat coconnie?

Mr. DEBRUM. Sometimes they were eating coconuts, yes. They indicated that to us

Mr. TATES. Ther did?

Mr. DEBRUM. Yos

Mr. YATES. Why could you not get there in time!

Mr. DEBRUM. We wanted to get there in time. At times we had serious transportation problems and were down to one ship for trips to the outer islands. Sometimes, the odds were against us, but we tried to do the best we could.

Mr. YATES. What do you mean, the odds were against you!

Mr. DEBRUM. We were down to one ship for all the outer islands at times.

Mr. YATES. And one ship would not service the island or the people? Mr. DEBRUM. It takes three field trip ships to service, to make a complete circuit of the Marshall Island group, once a month.

Mr. YATES. How many ships do you need for the food for the people who were on Bikini? Was one ship adequate for a month's

supply of food?

Mr. DeBrux. If we have one ship committed only to Bikini, yes, one ship will do it. The ship that is committed to service Bikini also services other islands in the Marshall Islands.

Mr. YATES. You mean provide food for the other islands?

Mr. DEBRUM. It provides services, it brings in copra and takes in trade goods so the people can buy it.

FREQUENCY OF SERVICE TO BIEINI ISLAND

Mr. YATES. Maybe we had better find out about where y " work throughout the islands.

How long would your lapses be? Presumably your schedule was one

ship a month with food for Bikini.

Mr. DEBRUM. Yes.

Mr. YATES. And how often were there lapses in this?

Mr. DeBrum. Not very much. There were times, as I recall, when we could not provide a ship until it was a month and a half late, sir. Mr. Yates. A month and a half late; you mean two weeks after the solvedule.

Mr. DEBRUSI. Two weeks after.

TIPE OF FOODS PROVIDED

Mr. YATES. After the schedule date. And what kind of food? You said you provided staples? What do you mean by staples?

Mr. Dr.Brum. Staples in Marshallese terms is rice, flour, canned

meets, milk.
Mr. Yates. No coconuts?
Mr. DeBrem. No coconuts.

Mr. YATES. I mean from the other islands.

Mr. DEBRUM. We never shipped any coconuts from the other islands.

Mr. YATES. Why would you not? If coconuts were such a delicacy for the Bikinians, why would you not provide coconuts for them, too?

Mr. DeBrust It was not a part of our feeding program, sir. Mr. Yates. If you were a Bikinian you would have liked ecconuts.

would you not, from other island:

Mr. Di.Brum. I would be climbing a tree and getting it myself.

Mr. YATES. You would not worry about radiation.

Mr. McKar. How do you get coconuts in the program? What kind of a bureaucratic round-about do you have to go through to get them on the program?

Mr. DEBRUM. I guess we just include it, make sure we have enough

money to go around.

Mr. McKay. Would you have authority to approve it?

Mr. DeBrum. No, sir. It would have to be approved by the High Commissioner.

Mr. McKay. Could be approve it alone or would be have to get approval up here!

Mr. DrBRUM. I think he has authority to approve it, the High

Commissioner.

Mrs. VAN CLEVE. Yes.

Mr. Yates, Mr. DeBrum, you said if coconuts were not supplied to you as a Ekkiman, you would be eliminate too to the first them.

Mr. Defenum. Yes, it they were available on the island, yes. Mr. Yares. And they are available on the island, are they not?

Mr. DEBRUM. Yes

Mr. YATES. So if you do not give them the coconness they are going to climb the types to get the coconness even if they are contaminated?

Mr. Di Brusi. They have been done that sir.

NATURE AND THE TYPE OF ANALYSIS BY DOE

Mr. YATTS. Let's go back to the interrogation.

"So you became a little more alarmed than when you were the Atomic Energy Commission. In 76 you first encountered this kind of a test. Is this an annual test that you had been making of the people? "Mr. Deal. Yes, sir.

"Mr. YATES. What kind of tests, monthly, semiannually, every four

months, or what?

"M" DEAL I can supply you a statement for the record. I will give

ye son information.

Then were is placed in the record on pages 1172 and 1173 a pretty good statement of tests that were made and a very bad estimate of the esults of the tests. We find in 1964 the findings, "photographed and identified organisms on reefs and islands. No gross anomalies seen in plants and animals due to radioactivity."

1976 shows "exposure levels to the Bikinians varies considerably

from island to island on the atoll."

February 1967, "confirmed earlier survey results for external radiation."

That does not tell us anything, "Cs-137 and strontium 90 predominate in terrestrial organisms, Co-60 and Fe-55 in marine organisms."

What does that mean. Dr. Deal?

Mr. Dr.al. It means that in the fish that they were catching they found cobalt-60 and Fe-55.

Mr. YATES. In large amounts! Mr. DEAL, I do not know, sir.

Mr. YATES. This result does not show that then?

Mr. Deal. No. We did not try to give you a complete copy of the reports. We just tried to give you the highlights of the surveys at the time, and probably, as you say, did a pretty poor job on that.

Mr. YATES. Yes.

Mr. McGraw. And the value 1:3-

Mr. YATES. OKRY Mr. McGraw. For Bikini 22 people in the sample. The value [13] quite a bit higher than Rongelap, but still a factor of like a third of the standard that we would evaluate with. This is of course 1977 numbers.

As I recall the 1974 data the value for Bikini was like .1. On the previous page the value for Bikini was .125, so between 1874 and 1977 the values went up by a factor of 10.

DATES OF WARNINGS TO PEOPLE OF BIKINI

Mr. Yares. If all this is true, sir, why four years ago in 1974 were you advising Mr. DeBrum to tell the Bikinians not to drink the well water and why were you then—you were bringing food in four years ago because there is no food on Birm?

Mr. DEBRUM. That is right, sir.

Mr. YATES. Contaminated of porcontaminated richt?

Mr. DEBRUM. That is correct. sir.

Mr. YATES. Then the lood came in two years ago, right? Wer aid the coconut trees start maturing?

Mr. DeBrew. About two years are.
Mr. Yarrs. Were you allowing them to eat the food that was growing on Bikini two years ago. Mr. McGraw?

Mr. McGraw. Were we allowing them two years ago?

Mr. YATES, Yes.

Mr. McGraw. When was the recommendation made? Did you say four years ago?

Mr. DeBrum. Yes, approximately about four years ago.
Mr. Yates. You have coconits growing on Bikini two years ago. You have pandanus and papayas and breadfruit growing two years ago. Four years ago you told them not to drink the water, there was no Head Tv. 19815 ... nad you told them not to eat the food. Were you told not to eat the food two years ago?

Mr. DeBrum. That was the time, four years ago, Mr. Chairman. that people were told that they were examining their food and they

had suspected-

Mr. YATES. And they were told not to eat it?

Mr. Dr.Barsi. They were discouraged from eating.

Mr. YATES. Were they told not to eat the food all through this period? They were told not to drink from the webs all during this

Mr. Di Berry Yes

Mr. YATES. Were they told not to eat the food all during this period too?

" further analysis convinced them otherwise.

ysis never convinced them?

BERTH. N. er convinced them. Mr. YATES. So they were told all during this period not to eat the

Mr. DEBRUM. Yes.

ADEQUACY OF FOOD SUPPLIED BY TTPI ADMINISTRATION

Mr. YATES. And in the meantime you were bringing them food?

Mr. DEBRUM. Yes. sir.

Mr. YATES. Every month except where you lapsed?

Mr. DEBRUM. Yes, sir.

Mr. YATES. And there was adequate food for all of them?

Mr. DEBRUM. Yes.

Mr. YATES. You are sure of that?

Mr. Dr.Britm. To the best of my knowledge sir.

Mr. Yarns. Is that true, Mr. Weisgall?

Mr. Wriscott. That is not quite the understanding of the Bikinians. As Mr. Leviticus has explained to me, the people living on Bikini would can the feed growing on the island even though they had been advised that it was questionable, when there simply we had enough for, and according to Mr. Leviticus, when a family would run out of food it would eat food growing on Bikini, be it coconuts, pandanus, or breadfruit.

REQUEST FOR MORE MONITORING OF BIKINI

Mr. YATES. Let's go back to Mr. Juda's statement.

Mr. Note. The second request we convey to you today. Mr. Chairman, is that your subcommittee closely monitor the upcoming radiological and foodstuff tests to be conducted at Bikini Atoll. The people living on Bikini Island desperately wish to remain on Bikini Atoll. and they are hopeful that tests on Encu Island will show it to be safe. They understand that the recent test results are preliminary, and they

hope that resettlement on Eneu will prove to be possible.

Mr. Chairman, we cannot describe the sorrow felt by our people as they learned, with bitter disappointment, that they must once again leave takini. Despite the contradictory statements of the U.S. Government over the last ten years, the people of Bikini have begun to understand the situation they face. They have told us that if the upcoming tests show that our people will not be able to live on Bikini or Eneu for the next 40 or 50 years, the people living in Bikini are prepared to relocate to Kili and Jaluit.

TPGRADING CONDITIONS ON KILL ISLAND

A move to Kili, however, and the establishment of Kili as a permanent home for the next two generations of Bikinians cannot come without help from the U.S. Government to develop Kili as a functional livable community.

For almost 30 years we have lived on Kili, thinking each year that we will move to Bikini the next year. As we face the possibility of 50 more years on Kili, it is clear that we must think and plan in longer

terms.

As you know, Kili is an island with no reef and no lagoon, and access to the island is very difficult for most of the year. Faced with these conditions, our people have not processed copra in large quantities because boats visit this island rarely. Months frequently go by without a visit from passing ships, and our only communication with the rest of the world is by radio.

TAB

ASSOCIATED UNIVERSITIES, INC

Uptor New York 11973

atet, & Environmental Protection Chauser

(615, 345- 4207

June 21, 1979

Dr. William L. Robison L-452 Lawrence Livermore Laboratory P. O. Box 808 Livermore, California 9455.

Dear Bill:

The enclosed tables present dosimetric and body burder information on former Bikini residents. Net external exposure rates (background subtracted) were obtained from "External Exposure Measurements at Bikini Atoll", N. A. Greenhouse et al., BEL Report (in press). Dosimetric models were outlined in several informal reports and are available upon request. Input data were obtained from "Whole Body Counting Results from 1974 to 1979 for Bikini Island Residents", R. S. Miltenberger et al., BEL Report (in press) and from unpublished bicassay results. New information on the long term removal of $137{\rm Cs}$ is being derived from replicate counts of former Bikinians done in January and May 1979. This preliminary information is also included, but we would like to corroborate these results with unine bioassay data which will not be available for several more weeks.

If you have any questions or need additional information, please contact me at FTS 666-4207 or Bob Miltenberger at FTS 666-2503.

Sincerely

N. A. Greenhouse

NAG/1m

Enclosures

cc: E. Lessard

- R. Miltenberger
- J. Naidu
- T. McCraw (OES).
- B. Wacholz (EV)

Individual Dosimetry Data for Bikinians - Explanation of Column Headings

olum:	Item or Derived Quantity	Measured Quantity	Comments
1	Name	-	Personal Interview
2	ID Number	-	BNL Medical Dept. & S&EF Div. Records
3	Residence Interval	-	Personal Interviews
4	90 Sr and Y Bone Marrow Dose Equivalent During and Post Residence Interval	Urine Activity Concentration	Three Compartment Model: Constant Continuous Uptake
5		Body Burder. Measurements	Two Compartment Model, Monotonically Increasing Uptake
6	Net External Dose Equivalent During Residence Interval	External Exposure Rate Measurements	
7	Total Bod, Dose Equivalent	 -	Sum of Columns 5 and 6
8	Total Bone Marrow Dose Equivalent During and Post Residence Interval	-	Sum of Columns 4, 5 and 6

INDIVIDUAL DOSIMETRY DATA FOR BIKINIANS

10 Number	Residence Interval Years	90 90 Sr & Y Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 _{Cs} + 137 _m _{Ba} Dose Equiv. During & Post Residence Int. mRem	Net External Dose Equiv. During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int.	Total Bone Marrow Dose Equiv. During and Post Residence Interval mKem	
		777.0.10		THE COLD	mive m		
6001	7.3	130*	480	950	1400	1600	
6127	7.3	19	580	950	1500	1600	
6130	.72	49	200	94	300	300	
607ñ	3.3	9.9	900	430	1300	1300	5 4 0
							5
813	4.3	77 ×	υ 0 0	560	1200	1200	50
6019	5.3	190	420	650	1100	1300	(8.2)
0111	.80	7.1	150	100	250	260	
6097	4.3	51 *	430	520	950	1000	
6115	7.3	97 .	760	880	1600	1700	
6109	4.3	51 *	240	520	760	810	-

l b Number	kesidence Interval Years	90 90 Y Sr & Y Bone Marrow Dose Equiv. During & Post Residence Inc. mRem	137 _{Cs} + 137 _m _{Ba} Dose Equiv. During & Post Residence Int. mRem	Net External Dose Equiv. During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int. mRem	Total Bone Marrow bose Equiv. During and Post Residence Interval mRem	
P091	6.3	74*	550	760	1300	1400	
6132	2.3	62	1200	300	1500	1600	
6046	2.0	27	400	240	600	700	
6061	6.3	65	υ30	766	1400	1500	
6066	3.3	59*	400	420	830	. 8.9 '	
6070	10.3	i.85*	870	130)	2200	94 v	
6118	6.3	42	420	8?0	1200	1300	
6117	6.3	110*	610	820	1400	1500	
6128	7.3	130*	810	950	1800	1900	
6122	10.3	86	380	1200	1600	1700	

	~						
1D Number	Residence Interval Years	90 90 Sr & Y Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 _{Cs} + 137 _m Ba Dose Equiv. During & Post Residence Inc. mkem	Net External Dose Equiv. During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int. mkem	Total Bone Marrow bose Equiv. During and Post Residence Interval mRem	
6015	1.7	31*	650	220	870	900	
6030	3.3	39*	1200	400	1600	1600	
6129	4.3	51*	330	520	850	900	
6027	3.3	39*	760	400	1200	1200	~
6010	7.3	86*	1100	900	2000	2100	
6105	3.3	39*	1100	40)	1500	150-	50154
6033	8.3	150*	900	110.)	2000	2100	_
6007	.88	15	190	110	300	310	
6008	4.3	77*	850	500	1400	1500	
6071	1.0	18*	220	130	350	370	_

1D Namber	Residence Interval Years	90 90 Sr & Y Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 _{Cs} + 137 _m Ba Dose Equiv. During & Post Residence Int. mKem	Net External Dose Equiv. During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int. mkem	Total Bone Marrow Lose Equiv. During and Post Residence Interval mkem	
863	4.3	120	620	600	1200	1300	
6086	8.3	240	990	1100	2100	2300	
6069	8.3	150*	580	1100	1700	1900	
6073	7.3	130*	490	950	1400	1600	m
6072	1.0	18*	330	130	460	480	
6119	7.3	130*	730	950	1700	1800	50
864	7.3	130*	960	950	1900	2000	
966	7.3	130*	1400	950	2300	2500	
6059	1.3	15*	240	160	400 -	410	
6124	.88	10*	180	110	390	400	

I D Number	kesidence Interval Years	90 Sr & 90 Y Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 137m Cs + Bu Dose Equiv. During & Post Residence Int. mkem	Net External Dose Equiv. During Kesidence Interval wkem	Total Body Dose Equiv. During & Post Residence Int. mkem	Total Bone Marrow Dose Equiv. During and Post Residence Interval mRem	
6058	5.3	63*	550	600	1200	1300	
6036	. 64	7.6*	260	77	340	340	
6110	8.3	98*	450	1000	1400	1500	
6051	5.3	63*	520	600	1200	1200	
6092	6.3	74*	1600	800	2400	2400	151
6080	.88	10*	200	110	310	320	50
6038	2.3	27*	1100	280	1400	1400	
6103	3.3	39*	1200	400	1600	1600	
6028	5.3	63*	1200	600	1800	1900	
8044	5.3	63*	1600	600	2200	2300	

1D Number	kesidence Interval Years	90 90 Y Sr & Y Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 137m Cs + Ba Dose Equiv. During & Post Residence Int. wkem	Net External Dose Equiv. During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int. mKem	Total Bone Marrow Dose Equiv. During and Post Residence Interval mRem	
6062	4.3	51*	540	520	1100	1100	
6034	7.3	86*	880	٩٥٥	1800	1900	
805	7.3	86*	430	900	1300	1400	
6050	2.3	27*	410	300	710	740	
6009	4.3	77*	1600	. 600	2200	2300	4 5
6049	2.3	41*	1600	ัรเพ	1900	1900	1 5 1
6042	.55	10*	510	72	580	5.90	50
6014	1.6	29*	1300	210	1500	1500	
6012	7.3	130*	1500	950	2400	2600	
6016	7.3	130*	1500	950	2400	2600	

ID Number	Kesidence Interval Years	90 90 Y Sr & Y Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 _{Cs} + 137 _m Ba Dose Equiv. During & Post Residence Int. mRem	Net External Dose Equiv. During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int. mkem	Total Bone Marrow bose Equiv. During and Post Residence Interval mkem
6013	2.3	41*	1300	300	1600	1600
6094	6.3	74*	1300	ΒUÜ	2100	. 2200
6005	1.8	12	470	230	700	710
6135	1.3	11	330	170	500	510
6125	9.3	45	890	1200	2100	2100
6067	7.3	- 54	780	950	1700	1800 -
6002	2.3	7.7	370	300	670	680
a00a	1.0	9.5	. 200	230	490	500
6112	1.3	12	260	160	420	430
6035	6.3	140	600	760	1400	1500

ID Number	Residence Interval Years	90 90 Sr & Y Bone Marrow Dose Equiv. During & Post Residence Inc. wkem	137 _{Cs} + 137 _m Ba Dose Equiv. During & Post Residence Int. mkem	Net External Dose Equiv. During Residence Interval Token	Total Body Dose Equiv. During & Post Residence Int. mkem	Total Bone Marrow bose Equiv. During and Post Residence Interval mkem	
6096	3.3	46	680	430	1100	1100	
80	1.0	18*	200	130	330	350	
6017	8.3	330	1200	1100	2300	2700	
6045	1.0	9.0	150	120	270	280	
6108	4.3	43	210	5:'ι	730	770	r
6063	4.3	19	620	524	1100	110	.= !!
525	1.0	5.6	350	120	470	ч.	_ C
934	6.3	120	1300	76c	2100	220c	•
6068	6.3	60	630	820	1500	1600	
6106	3.3	39*	750	400	1100	1200	
6025	3.3	39*	900	400	1300	1300	

301124

	10 Number	Residence Interval Years	90 Sr & 90 Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 _{Cs} + 137 _m Ba Dose Equiv. During & Post Residence Int. mkem	Net External Dose Equiv. During Residence Interval mkem	Total Body Dose Equiv. During & Post Residence Int. mKem	Total Bone Marrow Dose Equiv. During and Post Residence Interval mRem	
	6113	4.3	19	360	520	880	900	
	6060	2.3	27*	510	280	790	820	
	6032	3.3	39*	960	. 400	1400	1400	
•	6123	4.3	50*	480	520	1000	1100	
ì	6098	3.3	39*	320	400	720	760	c
	6065	4.3	130	390	.20	910	1000	L.
	6004	.55	10*	130	72	200	2:0	C L
	6018	6.3	150	1100	520	1900	2100	
	6126	2.3	45	1100	300	1400	1400	
	6003	8.3	250	580	1100	1700 -	1900	
	61.14	1.0	12*	170	120	290	300	

INDIVIDUAL DOSIMETRY DATA FOR BIKINIANS (cont'd)

 1D Number	Residence Interval Years	90 Sr & 90 Y Bone Marrow Dose Equiv. During & Post Residence Int. mkem	137 _{Cs} + 137 _m _{Ba} Dose Equiv. During & Post Residence Int. mkem	Net External Dose Equiv. During Residence Interval mRem	Total Body Dose Equiv. During & Post Residence Int. mkem	Total Bone Marrow Dose Equiv. During and Post Residence Interval mkem
6064 -	7.3	86*	400	900	1300	1400
6023	4.3	77*	990	560	1500	1600
6131 .	0.3	110*	950	820	1800	1900
6011	6.3	170	550	820	1400	1600
6081	. 97	12*	490	120	610	620
6133	7.3	130*	1900	950	2800	3000
6048	.55	6.5*	590	72	666	670

^{*}These values were derived from average male or average female daily activity ingestion rates for Sr-90.

Body Burden Data for Medically Registered Adult Hales Relocated from Bikini Atuli

					1974		19772			19	78					Jam	141 y 15	179				шу 1979			i37 _{Cs}
Med- ICAl ID	Worght in Kilu− grama	Agα (γr)	Yeara on Bikini	Potas- #1:m gram#	13) µCi	Ca kBq	Potes- sium grams	137 µCi	Cs kBq	Potas- asum grams	60 nCi	Co Bq	137 µCi	Cs kHq	Potas- atim grams	60 ₍	Co By	137 µCi	C∎ k∟Bq	Potes" sium grass	nCi	oU _{Co} ≱q	137 µCi		Removal Rate Coastant
·		······································																		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					. 4
80	61	69	0.75	-	-	-	-	-	-	97.6	1.42	23	3.14	42"	-	-	-	•	-	133	HUL	HUL	0.12	4.	
6006	63	31	0.75	-	-	-	. . .	-		141	2.19	88	1.47	54	-	-	-	-	-	-	-	-	-	-	
843	67	21		- -	-		146	0.729	27	156	4.9)	180	2.34	87	179	2.5	93		41	-	-	-	-	-	
6070	8.5	28	10	170	0.093	3.4	167	1.51	56	152	8.17	300	3.92	150	137	3.0	111	1.6	59	~	-	-	-	-	
6004	95	28	0.23	•	-		-		-	167	1.85	70	1.33	49	-	-	-	-	-	-	-	-	-	-	
6011	79	21	•	148	0.095	3.5	136	1.52	56	133	8.65	320	3.84	140	-	-	-	-	-	-	-	-	-	-	
6018.	89	34	6	198	0.22	8.2	-	-	-	180	14.1	530	5.88	330	-	-	-	-	-	-	-	-	-		
6069	61	32			-			-	-	132	4.01	150	1.17	43	-	-	-	-	-	166	2.0	74	0.38	14	
6068	79	36		165	0.051	1.9	144	0.774	29	141	6.17	3,10	3.07	110	-	-	-	-	-	-	-	-	-	-	. 3.
COPI	74 .	56		-	-	-	-	-	-	151	5.91	330	2.99	110	137	2.4	89	1.0	31	169	1.2	44	0.63	23	4.1x10 11
* 6066	94	33	3	-	•	•	-	-	-	168	- 2.04	75	0.870	30	171	1.2	44	0.48	18	197	HUI.	HDI.	0.45	17	5610
(101)	B O	44	•	-	-	-	-	-	-	153	13.9	510	5.72	210	-	-	-	-	-	165	1.5	56	0.52	19	
0013	40	4.8	3	-	-	-	119	D.791	29	107	3.95	120	1.03	38	135	2.9	107	0.19	14		-	-	-	-	
4001	85	66)	143	0.078	2.9	_	-	-	126	3.13	120	1.73	61.	132	1.9	70	0.17	26		-	-	-	-	
60/1	*5	74	7	-	-	-	132	0.775	29	127	4.19	160	7.18	& O	~	-	-	-	-	1 34	HDL	MDL.	0.12	4.4	•
6005	70	36	1.5	-	-	-	-	-	-	133	3.40	130	1.08	11	-	-	-	-	-	177	1.1	41	0.16	5.3	7
9(X)Q	33	31	4	-	-	-	153	1.99	74	125	5.00	190	1.94	72	148	3.2	118	1.3	4.8	-	-	-	-	-	- 3
41166	78	46		170	0.17	6.2	149	2.14	79	151	7.92	290	3.51	130	179	2.8	104	0.86	32	161	1.9	70	0.40	15	6.7×103
6071	78	33	0.75	-	-	-	-	-	-	136	2.26	84	1.72	64	136	1.2	44	0.93	34	-	-	~	_	-	•, •••
6076	69	34	3	-	-	-	-	-	-	167	6.64	250	3.44	130	171	2.9	107	2.4	89		_	-	-	-	•
60/1	35	20	0.67	• .	-		_	-	-	128	2.46	110	1.75	65		-	-	-			-	-	_	_	
811	38	23	4	-	-	-	143	0.995	37	138	3.65	140	1.69	62	154	1.8	6)	0.61	23		-	_	-	-	
6118	33	22	6	126	0.17	2.9		-	-	108	1.92	71	0.631	23	144	1.6	59	0.75	28		0.90	33	0.41	15	5.3x 10 3
6126	33	33	. 2	-	_	-	149	2.21	82	137	7.79	290	3.30	120	_	-	_	-	-			-	-	-	J. J. I.U
6003	77	3.3		168	0.076	2.8	161	0.923	34	1)9	5.60	210	2.44	90	-	-		-	-		-	_	_	_	
0117	ðú	33	•	_	-		169	1.15	43	148	6.09	2 70	2.68	99	1/2	2.9	107	0.90	33	l· n	1.5	56	0.44	16	G.YxIO3
6128	52	31	7	-	-		149	1.29	AB	119	4.19	180	1.85	69	155	2.7	-100		34	. "	-	-	-		ALANID.
6125	64	35	3	159	0.10	3.6	150	1.34	57	144	3.65	210	2.52	93			-	-		144	2.0	74	0.33	12	
6001	#2	35	0.58	_	-	-	-	_	-	127	2.38	95	1.49	55	144	0.67	25	0.32	12				-	••-	
6130	69	79	0.42	-	-	-	-	-	-	143	2.20	81	1.46	54	179	1.5			50	104	HIN.	HUL	0.97	36	J. Rx 10 3

Person had recently traveled to Bikini Atoll

Body Burden Data for Hedically Registered Adult Hales Relocated from Bikini Atull (Cont'd)

					1974		19772			19	78					Jan	uary 19	9/9				H∞y 197	<u>•</u>	Long Term Removal
Hed- ical ID	Height In Kilo- Stans	Age (Yr)	on	Pot as- sium grama	133 µCl	Ca kBq	Potas- sium grass	137 µCi	Ca kBq	Potas* sium grams	60 nCi	Co Bq	13 µCí	Ca kBq	Potus = stum graus	ь0 nCi		137 ₍	Co kBq	Potas= sius grass	nCi	bu Вq	137 ₀	0.6-
6119	34	17	,				136	0.641	24	124	4.58	170	2.13	79	_									-
064	90	51	i	163	0.29	11	131	3.23	120	136	5.99	230	3.05	110	_	-	-	-	-	-	-	_	-	-
900	25	56	j	•	-	-	162	2.22	92	174	14.8	550	3.71	210	-	-	-		-	149	2.5	93	0.48	18
61.33	81	15	1	-	-	-	•	-	-	142	3.30	130	2.12	78	-	-	_	-	-	· -	-	-	-	,
4094	66	48	. 3	-	-	-	145	1.93	64	140	4.32	100	1.91	71	146	2.5	91	1.3	48	156	0.9	33	0.70	26 5. YEIL'S
6002	66	65	2	-	_	-	130	1.04	38	116	2.21	8 2	1.26	46	-	<u>:</u>	-	-	_	_	_	-	-	_
1161 1.4	64	34	5	110	0.081	3.0	-	-	-	-		-	-	-	142	HOL.	HDL.	. 109	4.0	176	HDL.	HDL	0.048	1.8 ዓ.
51663,4	64	58.	7	150	0.072	2.7	-	-	-	-	-	-	-	-	146	HDL	HDL	0.023	0.85	146	HUL	HUL	0.011	0.41 7. >
3184 ⁴	30	59	5	160	0.043	1.6	-	-	~	-	-	-	-	-	130	HDL	HDL	0.067	2.5	144	HDL.	HDL.		0.93 4.2210
12104	85	"	10	156	0.124	4.4	0.74	27	-	-	- .	-	-	-	-	-	-	-	-	160	HUI.	нус	0.290	11

CU 15

: 00 11

1 Individuals left Bikini Atoll 8 months prior to the August 1978 Relocation Program.

Individuals received sick call medical care prior to April 1978 but were not officially registered.

Colony man Remove tion

61213	Ū	•140	•	,		965	*(D*	613	60 53	190	• •	1404	190	49619	ž	6 1.10	60 36	6000	8604	0.04	. 109					6108	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 07.1	B 11 5 9	6173	6122	=	-	6112	904.5	į	<u> </u>	•	
2	ŗ	7	Ξ	ć	2	ž	ř	¥	Ξ	ž	*	č	\$	ć	ĭ	=	ž	5	60	5	30	۳	×	ž	-	•	: :	2 \$	5	=	Ξ	7	*	č	=	•	Ki In-	- 4- 	-
~		ب	,	~	~	_	7	~	•	•	•	J	-	,	0.73	-	0. •	~	_	- :	•		•	٠,	. م	- :	₽ .		_	-	-		B. 3	-	D. 25			7010	
=	¥	2	~	š	23	*	;	5	ĕ	1.5	S	-	2	ĕ	37	ະ	₹	22	;	٤	J	;	Ţ	3 3	= :	2	* :	; ;	3	č	č	₩.	= :	<u>=</u>	26	=	Age		
1	•	\$	111	3	•	<u>ن</u>	<u> </u>	3	1		•		1	•	•	=		•	·		•	86		, ;	\$:	9		٠.	1		9,				,		-	7:140	
ι	•	.01	0.073	0.030	•	0.01	0.12	0.038	•	•	•	1.	i	•	ı	<u>. </u>	ı	,	•	•		0.036		. !	0.077	0.029			1	ı	0.013		ŧ			Ē	<u>.</u>	•	=
		0.6	1.7	<u>-</u>	•	0.67	5	2.2	•		•	,	,	•		.			•	,	ı	Ξ	•	. ;	٠ •	_				1	<u>.</u> .				•	<u>.</u>	٤,	:	1974
																														107						81.5	÷	Y u (••	19//2
																														1.53						Ē			
يد	70 2			ı	•	¥ 2	• •	•	2	, O	_	¥5 20			1				₽ 26		21 2	£ -	7	۲ i	90	90		99		3						# no.		;	
,	-			•	_	=	93	2	- E	- -			•	•	401	ž				- -	=	~ •	~ ~	. پ	e .	۰,				7 99	•	10	. .	•	9	ĺ	<u>:</u>	7 0.	
•		•		1		-																								9 3.81								•	1978
	ı		•	,																										1 140						۔ م	ړ	:	
•	•		ı	•	1.40	<u>:</u>	3.89	2.78	7.16	1.44	J. 48	1.44	1.22	0.907	2.36	٠. ٢	- ::	٦. پ	. 8 9 1	2 . To	0.411	≥	1.06	- : ::	2.08	0.779	= -	1.52	0.861	1.41	*	1.)	0.618	- - -	- - -	5			
				,	ž	•	140	9.	100	~	200	~	62	7.	0.	ž	٤	~	<u>.</u> ا	ž	5	٤	٧	<u>.</u>	~ :	~ ;	, i	- ×	2	>2	6.3	6,7	٠	5	۲.		٠,٠	;	
8.7	1)6	90	115	97	,			700	100			•	•	1,	•		,	105	39		Ę	9.	96	10/	. :		. ,	• ,	,	126	9.	10)	107	3.6			•	Tot.	1919
¥.	를	JEK	HIN	HOL			,		2.3	,		,		1.6	•			된	1.2	,	HDF.	- 0	-	_	. ;	_	· :	-	,	7.3	9	1.7	¥ :	-		'	, ,	•	_
																							٠							9.3						 		\$	January
0.131	0.061	0.033	0.028	0.013		,		0.48	0.65	,			,	0.42	•			c	17.0	,	0.060	0.31	٥. ٢	0. 10	, ;	0.51		נ	:	0.62	o. =	0. 33	0.13	0.98	.	-	<u>.</u>	-	
÷.5						•																								7.1						; . <u>.</u>	ָרֶי נ	7	
2		*		Ī		8.2		خ		÷	÷	=		3	1 U9	10		1.5	4.	č,	=	86		10)		1 -	. ;	09	,	9)	e e	•		=======================================	ı	,		Fot 34.	
Æ		ă	137	표		1.0	HDI.	2.0	,	HUI.	?.1	אטנ		Ħ	711	1		HU.	HD1.	1.7	Ħ.ř.	벌		1 <u>9</u> 1			. ;	- '		HDL	-		•	MU.		1			
Į,																								Hil						HDI.								60	May 1979
0.03		0.015																										0.76	,	0.75	C			0.46	,	,	Ω.	こ	
																														9.3 4 AA							F MA	-	1.1

5011552

Budy Buiden Data for Bedivally Registered Adolascents Relocated from Bitini Atoli

	tions less		Hedical
•	266	**:5*:*	Fritz
	¢ .25		Ya
	בבָּב	=======	F
	· 1 de	r t <u>se</u> v s e v se	Fut
	U	0.959 (1.1) (1.1)	197) 13 pCt
Medical 10 6147 6011 6011 6015	, s 3		13/ _C ,
147 147 131 131 137	\$ 0.5 5.0	22222 22222 22222	Con
·	1.12 2.61 2.70		7309 8161
.377C5	* * *	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2
37C5 1:25 Teim 2:2011 Rate 2:2011 Rate 1.1 x10 1.2 x1		1.85 1.69 0.010 0.717 2.09	hçi I
37Cs 1:25 Teim 2:22 8:9 X 10-2 8:9 X 10-2 1.1 x 10 1.4 x 10 1.1 x 10 1.1 x 10 2.2 x 10 2.3 x 10 2.4 x 10 2.4 x 10 2.5 x 10 2.7 x	76 28	C = 2 - 0 & 1	13700
	10.1	2 9 X E 2	Fulsaxius Brass
· •	Į · į	8 P C C C C C C C C C C C C C C C C C C	1979 6000
<u> </u>	۲ £	19 1 2 2 A A A A A A A A A A A A A A A A A	Σ
	0.27	0.104 0.14 0.035 0.11	13768
	. · · · · · · · · · · · · · · · · · · ·	7.0 2H 1.0 3.8	V.
	g :- 3	85822. %	Forestu
		100 100 100 100 114 104 100 100 100 100	nCi
		401 401 52 52	200
	0.0% 0.0%	0.075 - 0.32 0.017 0.053 0.027	νC1
5011553	2.1	2.a 17 0.61 3.0 0.61 0.61	,

ا ما ما ما ما ما ما	6080 34 0.38 7 6010 29 7 8 6030 21 3 6 6105 22 3 9 6048 25 5 7 6040 34 3 10 6044 18 3 5 6 6042 21 3 3
5 2 2 2 5	
E ≃ ≥ :	
	0.543 20 1.41 32 1.00 37 0.967 36 1.40 57
	T S T WILL
	י הי
	2.0
	1 1 1

body Burden Date for Pedically Registered Children Relocated from Bikini Atull

137 (s. Leng
Term Remond
Nake
Conshipted

5011554

ŀ

body barden Data for Medically Registered Children Relocated from Bikini Atoll

							<u> </u>	1	Jamusty		жау		(S king Trim
ē	tr. K	(Y r)	Height	Weight (kg)	Yra On Bikini	Yra Off	1979 137 _{C#} Result) CH	1979 Potassium Result Grans	19 133 Rea	1979 137 _{Ca} Result	19/9 Potassium Menult Ctans	Time and Thek
¥1£09	ı	<u>۷</u>	¢01	20	u	. 70	1	!	ì	2.8	0.10	35	
6029	z	6	112	20	5	. 70	1	1	;	4.7	0.17	25	
\$100 \$	×	U.	99	1.7	4.3	.70	1	t 1	;	2	0.56	24	
60214	×	v	103	19	4.3	.71	46	1.7	HC	6.2	0.23	51	3.14122
6020	×	•	10)	20	~	.71	\$6	2.1	72	1.4	0.27	37	2,Cx10 2
\$1U) *	×	<u>~</u>	96	5	4.3	.71	5	0.39	46	2.6	0.096	40	2.72.6.2
6074	×	<u>~</u>	ĕ	20	4.3	. 71	9.0	9.0 0.33	34	10F	ነብ	25	
901B#	•	~	66	:	;	0.40	J. U	0.11	28	;	;	:	
9.8809	-	u.	95	5	4.3	. 70		}	1	J.0	0.11	14	.*
6090	~	۰	108	25	5	. 70	1.	;	;	4.9	0.18	16	
6101	-	6	101	19	5.3	.70	51	1.9	12	6.9	0.26	15	2+1 LIC *
€056 *	4	٠	2	1.7	4.3	.71	46	1.7	NC .	1.4	0.27	6.7	1.4 410-2
6057	7	7	107	26	-	.72	}	;	1	5.8	0.27	66	
*Indicates children were 4 yrs or less April, 1978	deen we	re t yr	s or less	April,	1978								

5011555

MC - Not Calculated

Body Burden Data for Non-Medically Registered Adult Hale Prior Residents of Bikini Atoll

		.			Yr.	2 7	r.γ. Y.γ.	May 1979 137 Ca Reault	May 1979 Potassium Resolu
10 4	Sex	(<u>/i.)</u>	(m)	(kg)	Bikıni	Bikini	nCi	k Bq	Grams
0619	x.	19	166	57	0.25	2	6.0	0.22	161
6705	×	42	170	7.0	•	4.5	HUL	ነብ	159
6211	x	19	163	55	_	نیا	10H	אטר	1 14
6218	×	56	BC I	72	2	10	HUL	JÜF.	169
6219	x	90	173	60	7	ş	HUL	ነመ	143
6220	×	26	166	66	2	æ	된	된	165
6221	×	51	175	82	2	9	4.2	0.16	139
6223	x	6	152	65	2 days .016 May 14, 15, 1979	.016	99	3.7	127
6224	x	5	158	>5	2 days May 14, 15, 19 <i>1</i> 9	.016	1.20	7.7	:46
6226	x	18	2	58	, 2 yr		Æ	194	137

budy Burden Data for Non-Redically Registered Adult Pale Prior Residents of Bikini Atoll

6182	0819	6174	9919	6133	8619	6136	10
= .	×	x	×	×	*	×	ارم د
10	22	52	16	2.1	20	Ω 7	λ ₈ e
161	173	174	130	160	163	150	Height (cm)
23	6.7	78	‡	\$	57	38	Weight (kg)
۰			7	-			Yre. On Bikini
0.42	-	•	1.0	1.42	u	4	Yru. Off Bikini
	34	17	2.4	5.8	2.8	8.5	Janua 1979 137 Ca Result
\$		0.63	0.089	0.21	0.10	0.31	Januar 79 - Ce ult kBq
122	141	851	101				1979 Potassium Result Gram
620	1	!	표	5.4	;	;	To I I
23	;	ł	HDL HDL	0.20	1	1	Hay 179 1Ca kBy
11.1	1	1	100	146	:		Hay 1979 1979 137Ca Potassium Result Result Cran
C.1×103	ı						139 C5 cong Term Remove Rate Constant d-1

B _V d _Y	
Burde	
Data.	
9	
Non-	
Red ica	
11	
Regist	
er ed	
Adult	
Female	
Prior	
Body Burden Data of Non-Kedically Registered Adult Female Prior Residents of Bikini Atoll	
0	
Bikin	
Atoll	

•	. •	~		•	4	7		•	4	•	<u> </u>	
21	\$	24	36	\$	24	20	21	16	22	3	Age	
Ī	151	155	142	153	133	157	150	1	140	161	Height (cm)	
1.	55	6)	60	55	66	88	. 44	46	JB.	\$	Weight (kg)	
u	•	;	1	•	0	_	-	0.17	}	0.33	Yra. On Bikini	
2.5	-	1	1.5	0.67	0.42	1.42	0.42	0.42	ų	•	Yrs. Olf Bikini	
	8.5	Ξ		360	390	2.4	37	27	2.1		1979 137 _{Ca} Result RCi kBq	
6 10	0.31	14.0	0.24	ū	15	0.089	1.4	1.0	0.078	0.14	79 Ca olt	January
7.6	105	90	76	67	120	123	105	44	89		1979 Potassium Result Cram	
3.4	4.6	5.2	i	140	150	3.9	13	8.6	1	1.7	Hen 13	!
0.13	0.17	0.19	1	5.1	150 5.6	0.14	0.48	0.32	!	0.063	1979 137 _{Ca} Result HCi kBq	Ншу
14	10:	92	;	87	96	111)	89	94	;	112	1979 Potaesium Rosult Class	
	811 516 3	4-1210-3		8.4×10.7	8.5×10.3		1.6 × 10.2	1.1×102			Term Remiral Rate Constant d-1	

110.1

Body Burden Data of Non-Medically Registered Adult Female Prior Residents of Bikini Atoll

<u>10 /</u>	Sex	Age (yt)	lleight (cm)	Weight (kg)	Yre on Bikini	Yru olf Bikini	Hay 1979 137 Cu Result nCi kBq	Hay 1979 Potassion Resolt Grama
6187	F	21	152	54	0.019	l	1.6 0.059	107
6189	P,	21	155		2.5	1	1.9 0.070	114
6206	r	32	151	73	3	5.5	HDL HDL	116
6222	ÿ	39	156	66	2.5	3	HUL HUL	98

Body Burden Data for Non-Medically Registered Adolescents and Children Prior Residents of Bikini Atoll

							Janua	ry		Нау	
Sex	Age (yr)	Height (cm)	Weight (kg)	Yre. On Bikini	Yra. Otf Bikini	13	979 ⁷ Cu uult <u>kBq</u>	1979 Potassion Result Crau	13	979 ⁷ Cu uult kBq	1979 Potassium Result Cram
н	9	130	34	6	1.0	2.0	0.074	53	3.4	0.13	59
н	5	85	15		1.5	8.0	0.30	40			
н	14	167	46	7	1.0	1.2	0.044	108	HUL	HUL	120
. н	10	130	30	7	1.0	2.8	0.10	40	1.9	0.070	74
н	12	157	33	4	1.0	2.0	0.074	46	1.7	0.062	70
H	12	139	35		1.67	1.0	0.037	36	HUL	HUL	74
F	8	115	22	4	1	1.2	0.044	HUL	MUL	.1 L	59
¥	6	103	18		6	HDI.	HDL	HDL	HDI.	HDL	36
r	8	144	24		6	MI)L	HDL	ног	MUL	HoL	38
r	13	142	47	3	0.42	4.0	0.15	11	MUL	ŀ	4.8
7	6	96	15	2.67	1.0	4.0	0.15	16	1.1	4.1	47
¥	13	140	45	7	1.0	2.8	0.10	. 58	1.8	10-107	77
Y	12	147	50		1.5	5.0	0.19	36			
Y	5	106	20	4	1.0	7.2	0.27	32	MUL	HDL	54
7.	6	103	20	4	1.0	3.5	0.13	32	1.2	0.044	46
 •	8	120	25	4	0.42	4.0	0.15	42	1.5	0.056	40
7	5	99	19	4.3	0.42	1.6	0.059	37	HUL	HDL	32

•		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Height (cm)	Weight (kg)	Yr # on Bikini	Yr a off Bikini	Ke a	Hay 1979 137 Cs Result	Hay 1919 Potassium Result Gran
200		14	155	43	-	. 71	110	4.1	Ξ
202		2	100	19	5.3	.72	1.8	0.067	<u>ي</u> 2
207		12	RE 1	35	4	4.5	194	HDL	78
208		10	116	ננ	4	4.5	¥ C	HUL	<i>}</i> t
225		Ξ	125	25	<u>σ</u>	נו. ו	HUL	Ę.	53
203	**	v	92	15	.4.3	.72	HUL	10F	Ł
204		v	104	21	-	. 72		0.040	5)
212	~	7.	151	50	•	u	HILL HILL HILL HILL HILL HILL HILL HILL	J.	7.3
.213	7	10	121	25	-	U	HUL	#DL	56
217	~	10	126	25	~	ç	HDL HDL	HDL	44

Body Buiden Data for Non-Hedically Registered Adolescents and Children Prior Residents of Bikini Atoll

Budy Burden Data for Non-Hedically Registered Adolescents and Children Never on Bikini Island

					{	Janu.	417		Huy	
					5.5	979 57 c	1979 1979 137Ca Potassium	E-	1979 137 _{C#}	1979 Polassium
	Sex	Age (yr)	Height (cm)	Weight (kg)	nCi.	k Bq	Result Cran	aC. F	r Hu	Result Gran
141	~5	12	851	££	2.7	0.10	63	1.5	0.056	112
142		10	126	26	2.3	0.085	52	1.0	0.037	1.1
43	*	•	104	19	1.2	0.044	1.1	KUL	10 4	35
45	×	~	110	21	1.0	0.037	46	;	!	1
86	· •	√	104	20	t 1	;	;	10F	HDL HDL	22
88	7	7	146	67	;	!	;	2.9	0.11	107
91	*:	•	113	23	!	:		1.1	0.041	5

AB

RADIATION PROTECTION

Recommendations of the International Commission on Radiological Protection

ICRP PUBLICATION 2

Report of Committee II

on

Permissible Dose for Internal Radiation

(1959)

PUBLISHED FOR

The International Commission on Radiological Protection

BY


PERGAMON PRESS

ONFORD LONDON EDINBURGH NEW YORK TORONTO SYDNEY PARIS BRAUNSCHWEIG

Table 1. Maximum permissible body burdens and maximum permissible concentrations of radionuclides in air and in water for occupational exposure

	Organ of	Maximum permissible		num permiss	ible concent	rations
Radionuclide and type	reference* (critical organ	burden in total	:	hr week	For 168	hr week
of decay	bold face;	body q(μc)	(MPC) _ω (με/cm³)	(MPC). (μc/cm³)	(MPC) (μc/cm³)	(MPC) _α (μc/cm ³)
¹ H ² (HTO or H ² ₂ O) β ⁻ ['sol.)	Body tissue Total body	$\begin{array}{c} 10^3 \\ 2 \times 10^3 \end{array}$	0.1 0.2	5 × 10 ⁻⁶ 8 × 10 ⁻⁶	0.03 0.05	2 × 10 ⁻⁶ 3 × 10 ⁻⁶
(H ³ ₂) (submersion)	Skin			2 × 10 ⁻³		4 × 10-4
_ε Be [†] (sol.)	GI (LLI) Total body Kidney Liver Bone Spleen	600 800 800 2 × 10 ⁵ 4 × 10 ³	0.05 6 9 9 20 50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.02 2 3 3 7 20	4 × 10 ⁻⁶ 2 × 10 ⁻⁶ 3 × 10 ⁻⁶ 3 × 10 ⁻⁶ 6 × 10 ⁻⁶ 2 × 10 ⁻⁵
(insol.)	GI (LLI)	1	0.05	10 ⁻⁶ 9 × 10 ⁻⁶	0.02	4 × 10 ⁻⁷ 3 × 10 ⁻⁴
_ε C ¹⁴ (CO ₂) (sol.) β ⁻	Fat Total body Bone	300 400 400	0.02 0.03 0.04	$\begin{array}{c c} 4 \times 10^{-6} \\ 5 \times 10^{-6} \\ 6 \times 10^{-6} \end{array}$	8 × 10 ⁻³ 0.01 0.01	10 ⁻⁴ 2 × 10 ⁻⁴ 2 × 10 ⁻⁴
(submersion)	رگان بستانی ا			5 × 10 ⁻⁵		10-5
F ¹⁸ (sol.)	GI (SI) Bone and teeth Total body	20 20	0.02 0.2 0.3	5 × 10 ⁻⁴ 3 × 10 ⁻⁵ 4 × 10 ⁻⁵	8 × 10 ⁻³ 0.06 0.09	2 × 10 ⁻⁶ 9 × 10 ⁻⁶ 10 ⁻⁵
(insol.)	GI (ULI) Lung	!	0.01	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 × 10 ⁻³	9 × 10-
11Na ²² (sol.) β ⁻ , γ	Total body GI (LLI)	10	10 ⁻³ 0.01	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 × 10 ⁻⁴ 3 × 10 ⁻³	6 × 10 ⁻⁷ 7 × 10 ⁻⁷
(insol.)	. 1		j-4	9 × 10 ⁻¹ 2 × 10 ⁻⁷	3 × 10-4	3 × 10 ⁻¹ 5 × 10 ⁻¹
11.Na ²⁴ (sol.) β ⁻ , γ	GI (SD Total body	7	6 × 10-3	10 ⁻⁶ 2 × 10 ⁻⁶	2×10^{-3} 4×10^{-3}	4 × 10- 6 × 10-
(insol.)	GI (LLI) Lung		8 × 10-4	10 ⁻⁷ 8 × 10 ⁻⁷		5 × 10 ⁻¹

^{*} The abbreviations GI, 2. 2. 2. It large intestine, and lower is a single sing

riler to gas... Intestinal tract, stomach, small intestine, upper

		Organ of	Maximum permissible		num permiss	ible concent	rations
Radion and t		reference (critical organ	burden in total	t .	hr week	For 16S	br week
of de		bold face;	body q(μc)	(MPC) _π (μc/cm ²)	(MPC). (µc/cm³)	(MPC) (μc/cm ³)	(MPC). (με/cm²)
ss Cs 1 te β-, γ	(sol.)	Total body Liver Spleen Muscle Kidney G1 (S1) Bone Lung	30 60 80 90 100 400 800	2 × 10 ⁻³ 5 × 10 ⁻³ 7 × 10 ⁻³ 8 × 10 ⁻³ 8 × 10 ⁻³ 0.02 0.03 0.06	4 × 10 ⁻⁷ 7 × 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 5 × 10 ⁻⁶ 4 × 10 ⁻⁶ 9 × 10 ⁻⁶	9 × 10 ⁻⁴ 2 × 10 ⁻³ 2 × 10 ⁻³ 3 × 10 ⁻³ 3 × 10 ⁻³ 8 × 10 ⁻³ 0.01 0.02	10 ⁻⁷ 2 × 10 ⁻⁷ 4 × 10 ⁻⁷ 4 × 10 ⁻⁷ 4 × 10 ⁻⁷ 2 × 10 ⁻⁶ 2 × 10 ⁻⁶ 3 × 10 ⁻⁶
	(insol.)	Lung GI (LLI)	i i	2 × 10 ⁻³	2 × 10 ⁻⁷ 3 × 10 ⁻⁷	6 × 10→	6 × 10 ⁻¹
ss Cs ¹³⁷ β-, γ, ε-	(sol.)	Total body Liver Spleen Muscle Bone Kidney Lung G1 (SI)	30 40 50 50 100 100 300	4 × 10 ⁻⁴ 5 × 10 ⁻⁴ 6 × 10 ⁻⁴ 7 × 10 ⁻⁴ 10 ⁻³ 10 ⁻³ 5 × 10 ⁻³ 0.02	6 × 10 ⁻⁸ 8 × 10 ⁻⁸ 9 × 10 ⁻⁸ 10 ⁻⁷ 2 × 10 ⁻⁷ 2 × 10 ⁻⁷ 6 × 10 ⁻⁷ 5 × 10 ⁻⁶	2 × 10 ⁻⁴ 2 × 10 ⁻⁴ 2 × 10 ⁻⁴ 2 × 10 ⁻⁴ 5 × 10 ⁻⁴ 5 × 10 ⁻⁴ 2 × 10 ⁻³ 8 × 10 ⁻³	2 × 10 ⁻¹ 3 × 10 ⁻¹ 3 × 10 ⁻¹ 4 × 10 ⁻¹ 7 × 10 ⁻¹ 8 × 10 ⁻¹ 2 × 10 ⁻⁷ 2 × 10 ⁻¹
	(insol.)	Lung GI (LLI)		10-1	10 ⁻² 2 × 10 ⁻⁷	4 × 10-4	5 × 10 ⁻³ 8 × 10 ⁻³
_{Бе} Ва ¹³¹ ¢, у	(sol.)	GI (LLI) Total body Bone Liver Muscle Lung Spleen Kidney	50 80 1.7 2 × 10 ⁴ 2 × 10 ⁴ 3 × 10 ⁴ 4 × 10 ⁴	5 × 10 ⁻³ 0.1 0.1 20 40 40 60 70	10 ⁻⁶ 2 × 10 ⁻⁶ 3 × 10 ⁻⁶ 4 × 10 ⁻⁶ 7 × 10 ⁻⁶ 7 × 10 ⁻⁶ 10 ⁻³	2 × 10 ⁻³ 0.03 0.05 7 10 10 20 20	4 × 10 ⁻⁷ 7 × 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁴ 2 × 10 ⁻⁴ 2 × 10 ⁻⁴ 4 × 10 ⁻⁴ 5 × 10 ⁻⁴
	(insol.)	Lung GI (LLI)		5 × 10 ⁻⁸	4 × 10 ⁻⁷ 9 × 10 ⁻⁷	2 × 10 ⁻³	10 ⁻⁷ 3 × 10 ⁻⁷
_k Ba ¹⁴⁰ β⁻, γ	(sol.)	GI (LLI) Bone Total body Liver Lung Kidney	4 9 10 ³ 3 × 10 ³ 3 × 10 ³ 4 × 10 ² 4 × 10 ³	8 × 10 ⁻⁴ 6 × 10 ⁻³ 0.01 2 4 5 6 8	2 × 10 ⁻⁷ 10 ⁻⁷ 3 × 10 ⁻⁷ 5 × 10 ⁻⁶ 9 × 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁶ 2 × 10 ⁻⁶	$ \begin{array}{c} 3 \times 10^{-4} \\ 2 \times 10^{-3} \\ 5 \times 10^{-3} \\ 0.9 \\ 2 \\ 2 \\ 3 \end{array} $	6 × 10 ⁻⁸ 4 × 10 ⁻⁸ 10 ⁻⁷ 2 × 10 ⁻⁸ 3 × 10 ⁻⁵ 4 × 10 ⁻⁵ 4 × 10 ⁻⁵ 5 × 10 ⁻⁵
	(insol.,	Lung GI (LLI)		7 × 10 ⁻⁴	4 × 10 ⁻⁸	2 × 10-4	10 ⁻⁸ 4 × 10 ⁻⁸

ek
2C/a
m3/
10-4
10-4

10-1 :0-1 10-1

0-

1-6)-6)-6)-6)-6 TAB

CONTINUITATION OF 137CS IN SUBSTENCE CROPS NO FISH AT DEUTSLAND

FOOD PRODUCT	NO, OF SNIPLES	AVERAGE CONCENTRATION .	RANGE OF CONCENTRATION PCI/G VET VEIGHT
	• •		•
COCONT MEAT (GREEN)	6	2 2.7	3.5 -48
· COCONUT NEAT (INTER- MEDIATE)	9	1 6.5	4.8-3 2
COCONUT NEAT CHATURE	31	3 0.9	5.3-117
COCONUT MEAT (SPROUT SPRINGY)	ED, 8	2 7	1 6-52
ALL COCOMUT MEAT	54	2 7	3.5-117
COCONUT FLUID	28	13.5	. 1,2-44
BREADFRUIT	2	6.5	5,2-7.8
SQUASH	1 2,	8.5	1.6-20
Рараул	18	14 .	1.6-31
Banaria	3	0.92	0.54-1.3
SWEET POTATO	2	3.6	2.3 -5
NATERIELON	17	2.6	0.26-7.2
GARDEN FRUITS AND VEGETABLES CAVERAGE SOUASH, PAPAYA, BAVIA SWEET POTATO, KATERM		5,9	
Fish (bullet)+	6	0.026	•
DOVESTIC MEAT		· 1 5*	. •

+ FROM V. NOSHKIN

ESTIMATED FROM BIKINI FIG DATA

CONCENTRATION OF "SR IN SUBSISTENCE CROPS AND FISH AT EVEN ISLAND

FOOD PRODUCT	NO. OF SNIPLES	AVERAGE CONSCINTRATION PCI/G WET WEIGHT	RANGE OF CONCENTRATION PCI/G VET WEIGHT
COCONUT MEAT	9 .	0.021	0.0033 - 0.052
COCONUT FLUID*	: 	0.021*	•
BREADFRUIT	2	1.9	0.47 - 3.4
N ATER/ELON	8	0.031	0.012 - 0.053
SQUASH	6	0.054	0.024 - 0.15
Papaya	5 '	0.29	0.052 - 0.39
SWEET POTATO	1	0.13	1 -
GARDEN FRUITS AND VEGETABLES (AVERAGE NATERMELON, SQUASH, SWEET POTATO)	of Papaya,	0.13	,
Fish (Mullet) Clams		0.076 ⁺ 0.035 ⁺	A.
DOVESTIC L'EAT	••	0.011**	

Assumed to be the same as coconut meat

⁺ FROM V. NELSON AND B. SCHELL

FROM 1975 BIKINI DOSE ASSESSMENT

CONCENTRATION OF 239+240PU IN SUBSISTENCE CROPS NO FISH AT ENEU ISLAND

-		•	
FOOD PRODUCT	NO. OF SAPLES	AVERAGE CONCENTRATION PCI/G NET NEIGHT	PANSE OF CONCENTRATION PCI/G NET VEIGHT
COCONUT MEAT	9	2.8 x 10 ⁻⁵	$4.1 \times 10^{-6} - 5.3 \times 10^{-5}$
COCONUT FLUID	-	2.8 x 10 ^{-5*}	. •
BREADFRUIT	1	1.7×10^{-5}	•
WATER-ELON	8	1.3×10^{-5}	$4.4 \times 10^{-6} - 2.0 \times 10^{-5}$
S QUASH	6	8×10^{-6}	3,5x10 ⁻⁶ -1,9x10 ⁻⁵
Рарауа	3	8.3×10^{-6}	6.5x10 ⁻⁶ - 1.1x10 ⁻⁵
GARDEN FRUITS AND VEGETABLE (AVERAGE LATERWELON, SQUASE PAPAYA)	OF	9.8 x 10 ⁻⁶	
FISH CULLET)+	6	1.3 × 10 ⁻⁴ +	et.

Assumed to be the same as coconut meat

⁺ FROM V. NOSHKIM

TAB

Œ.

FEDERAL RADIATION COUNCIL

RADIATION PROTECTION CUIDANCE FOR FEDERAL AGENCIES

Memorandum for the President

Pursuant to Executive Order 10831 and Public Law 86-373, the Federal Radiation Council has made a study of the hazards and use of radiation. We herewith transmit our first report to you concerning our findings and our recommendations for the guidance of Federal agencies in the conduct of their radiation protection activities.

It is the statutory responsibility of the Council to "" " advise the President with respect to radiation matters, directly or indirectly affecting health, including guidance for all Federal agencies in the formulation of radiation standards and in the establishment and execution of programs of cooperation with States " ""

Fundamentally, setting basic rediation protection standards involves passing judgment on the extent of the possible health hazard society is willing to accept in order to realize the known benefits of radiation. It involves inevitably a balancing between total health protection, which might require foregoing any activities increasing exposure to radiation, and the vigorous promotion of the use of radiation and atomic energy in order to achieve optimum benefits.

The Federal Radiation Council has reviewed available knowledge on radiation effects and consulted with scientists within and outside the Government. Each member has also examined the guidance recommended in this memorandum in light of his statutory responsibilities. Although the guidance does not cover all phases of radiation protection, such as internal emitters, we find that the guidance which we recommend that you provide for the use of Federal agencies gives appropriate consideration to the requirements of health protection and the beneficial uses of radiation and atomic energy. Our further findings and recommendations follow.

Discussion. The fundamental problem in establishing radiation protection guides is to allow as much of the beneficial uses of ionizing radiation as possible while assuring that man is not exposed to undue lazard. To get a true insight into the scope of the problem and the impact of the decisions involved, a review of the benefits and the hazards is necessary.

It is important in considering both the benefits and hazards of radiation to appreciate that man has existed throughout his history in a both of natural radiation. This background radiation, which varies over the earth, provides a partial basis for understanding the effects of radiation on man and serves as an indicator of the ranges of radiation exposures within which the human population has developed and increased.

The benefits of ionizing radiation. Radiation properly controlled is a boon to mankind. It has been of inestimable value in the diagnosis and treatment of diseases. It can provide sources of

energy greater than any the world has yet had available. In industry, it is used as a tool to measure thickness, quantity or quality, to discover hidden flaws, to trace liquid flow, and for other purposes. So many research uses for ionizing radiation have been found that scientists in many diverse fields now rank radiation with the microscope in value as a working tool.

The hazards of ionizing radiation. Ionizing radiation involves health hazards just as do many other useful tools. Scientific findings concerning the biological effects of radiation of most immediate interest to the establishment of radiation protection standards are the following:

1. Acute doses of radiation may produce immediate or delayed effects, or both

2. As acute whole body doses increase above approximately 25 rcms (units of radiation dose), immediately observable effects increase in severity with dose, beginning from barely detectable changes, to biological signs clearly indicating damage, to death at levels of a few hundred rems.

3. Delayed effects produced either by acute irradiation or by chronic irradiation are similar in kind, but the ability of the body to repair radiation damage is usually more effective in the case of chronic than acute irradiation.

4. The delayed effects from radiation are in general indistinguishable from familiar pathological conditions usually present in the population.

5. Delayed effects include genetic effects (effects transmitted to succeeding generations), increased incidence of tumors, lifespan shortening, and growth and development changes.

6. The child, the infant, and the unborn infant appear to be more sensitive to radiation than the adult.

7. The various organs of the body differ in their sensitivity to radiation.

8. Although ionizing radiation can induce genetic and somatic effects (effects on the individual during his lifetime other than genetic effects), the evidence at the present time is insufficient to justify precise conclusions on the nature of the dose-effect relationship at low doses and dose rates. Moreover, the evidence is insufficient to prove either the hypothesis of a "damage threshold" (a point below which no damage occurs) or the hypothesis of "no threshold" in man at low doses.

9. If one assumes a direct linear rition between biological effect and the amount of dose, it then becomes period to relate very low dose to an assumblological effect even though it is much tectable. It is generally agreed that may actually occur will mexceed the amount predicted by the assumption.

Basic biological assumptions. Ther are insufficient data to provide a fin basis for evaluating radiation effects : all types and levels of irradiation. is particular uncertainty with rest the biological effects at very low di-and low-dose rates. It is not pruditi therefore to assume that there is a let. of radiation exposure below which that is absolute certainty that no effect inoccur. This consideration, in addition to the adoption of the conservative 1. pothesis of a linear relation between it logical effect and the amount of c: determines our basic approach to ilformulation of radiation protection guides.

The lack of adequate scientific information makes it urgent that additional research be undertaken and new ord developed to provide a firmer basis it evaluating biological risk. Appropriation Council are sponsoring and energy aging research in these areas.

Recommendations. In view of the findings summarized above the following recommendations are made:

It is recommended that:

1. There should not be any mon-mad radiation exposure without the expectation of benefit reculting from such exposure. Activities resulting in man-mad radiation exposure should be authorized for useful applications provided in the commendations (see forth herein althollowed.

It is recommended that:

2. The term "Radiation Protection Guide" be adopted for Federal use. The term is defined as the radiation of which should not be exceeded within careful consideration of the reasons for doing so; every effort should be made to encourage the maintenance of radiations as far below this guide. I practicable.

It is recommended that:

3. The following Radiation Protection: Guides be adopted for normal peacetime operations:

Type of exposure	Condition	Dose (rem)
Hadiation worker: (a) Whole body, head and trimk, active blood forming organs, goinds, or lens of eye. (b) Skin of whole hody and thyroid. (c) Hands and forcarms, bet and ankles. (d) Bone. (c) Other organs.	13 weeks Vear 13 weeks Vear 13 weeks Body burden	5 times the number of years to; or age 15. 3. 30. 10. 75. 20. U I microcram of radium-2N or inclogreal equivalent.
Population: (a) Individual. (b) Average.	Year	05 (whole body), 6 (ronads),

The following points are made in relation to the Radiation Protection Guides herein provided: (1) For the individual in the population, the basic Guide for annual when body dose is 0.5 rem. This Guide (7)

plies when the individual whole body doses are known. As an operational technique, where the individual whole body doses are not known, a suitable animple of the exposed population should be developed whose protection puide for annual whole body dose will be 0.17 rem per capita per year. It is emphasized that this is an operational technique which should be modified to meet special situations.

(2) Considerations of population genetics impose a per capita dose limitation for the gonads of 5 rems in 30 years. The operational mechanism described above for the annual individual whole body dose of 0.5 rem is likely in the immediate future to assure that the gonadal exposure Guide (5 rem in 30 years) is not exceeded.

(3) These Guides do not differ substantially from certain other recommendations such as those made by the National Committee on Radiation Protection and Measurements, the National Academy of Sciences, and the International Commission on Radiological Protection.

(4) The term "maximum permissible dose" is used by the National Committee on Radiation Protection (NCRP) and the International Commission on Radiological Protection (ICRP). However, this term is often misunderstood. The words "maximum" and "permissible" both have unfortunate connotations not intended by either the NCRP or the ICRP.

æ.

(5) There can be no single permissible or acceptable level of exposure without regard to the reason for permitting the exposure. It should be general practice to reduce exposure to radiation, and positive effort should be carried out to fulfill the sense of these recommendations. It is basic that exposure to radiation should result from a real determination of its necessity.

(6) There can be different Radiation Protection Guides with different numerical values, depending upon the circumstances. The Guides herein recommended are appropriate for normal peacetime operations.

(7) These Guides are not intended to apply to radiation exposure resulting from natural background or the purposeful exposure of patients by practi-

tioners of the healing arts.

(8) It is recognized that our present scientific knowledge does not provide a firm foundation within a factor of two or three for selection of any particular numerical value in preference to another value. It should be recognized that the Radiation Protection Guides recommended in this paper are well below the level where biological damage has been observed in humans.

It is recommended that:

4. Current protection guides used by the agencies be continued on an interim basis for organ doses to the population.

Recommendations are not made concerning the Radiation Protection Guides for individual organ doses to the population, other than the genads. Unfertunately, the complexities of establishing guides applicable to radiation exposure of all body organs preclude the Council from making recommendations concerning them at this time. However, current protection rules used by the agencies appear appropriate on an interim basis.

It is recommended that:

5. The term "Radioactivity Concentration Guide" be adopted for Federal use. This term is defined as the concentration of radioactivity in the environment which is determined to result in whole body or organ doses equal to the Radiation Protection Guide.

Within this definition, Radioactivity Concentration Guides can be determined after the Radiation Protection Guides are decided upon. Any given Radioactivity Concentration Guide is applicable only for the circumstances under which the use of its corresponding Radiation Protection Guide is appropriate.

It is recommended that:

6. The Federal agencies, as an interim measure, use radioactivity concentration guides which are consistent with the recommended Radiation Protection Guides. Where no Radiation Protection Guides are provided, Pederal agencies continue present practices.

No specific numerical recommendations for Radioactivity Concentration. Guides are provided at this time. However, concentration guides now used by the agencies appear appropriate on an interim basis. Where appropriate radioactivity concentration guides are not available, and where Radiation Protection Guides for specific organs are provided herein, the latter Guides can be used by the Federal agencies as a starting point for the derivation of radioactivity concentration guides applicable to their particular problems. The Federal Radiation Council has also initiated action directed towards the development of additional Guides for radiation protection.

It is recommended that:

7. The Federal agencies apply these Radiation Protection Guides with judgment and discretion, to assure that reasonable probability is achieved in the attainment of the desired goal of protecting man from the undesirable effects of radiation. The Guides may be exceeded only after the Federal agency having jurisdiction over the matter has carefully considered the reason for doing so in light of the recommendations in this paper.

The Radiation Protection Guides provide a general framework for the radiation protection requirements. It is expected that each Federal agency, by virtue of its immediate knowledge of its operating problems, will use these Guides as a basis upon which to develop detailed standards tailored to meet its particular requirements. The Council will follow the activities of the Federal agencies in this area and will promote the necessary coordination to achieve an effective Federal program.

If the foregoing recommendations are approved by you for the guidance of Federal agencies in the conduct of their radiation protection activities, it is further recommended that this memorandum be published in the FEDERAL REGISTER.

Anthur S. Flemming, Chairman, Federal Rediation Council, The recommendations numbered '1 through "7" contained in the accommendation are approved for a guidance of Federal agencies, and a memorandum shall be published in the Federal Recister.

DWIGHT D. EISENHOWER

MAY 13, 1960.

[F.R. Doc. 60-4539; Filed, May 17, 1973 8:51 a.m.]

FEDERAL RADIATION COUNCIL

RADIATION PROTECTION GUIDANCE FOR FEDERAL AGENCIES

Memorandum for the President

SEPTEMBER 13, 1961.

Pursuant to Executive Order 10831 and Public Law 86-373, the Federal Radiation Council herewith transmits its second report to you concerning findings and recommendations for guidance for Federal agencies in the conduct of their radiation protection activities.

Background. On May 13, 1960, the first recommendations of the Council were approved by the President and the memorandum containing these recommendations was published in the FED-ERAL REGISTER On May 18, 1960. There was also released at the same time. Staff Report No. 1 of the Federal Radiation Council, entitled, "Background Material for the Development of Radiation Protection Standards," dated May 13, 1960.

The first report of the Council prowided a general philosophy of radiation protection to be used by Federal agencies in the conduct of their specific programs and responsibilities. It introduced and defined the term "Radiation Protection Guide" (RPG). It provided numerical values for Radiation Protection Guides for the whole body and certain organs of radiation workers and for the whole body of individuals in the general population, as well as an average population gonadal dose. It introduced as an operational technique, where individual whole body doses are not known, the use of a "suitable sample" of the exposed population in which the guide for the average exposure of the sample should be one-third the RPG for the individual members of the group. It emphasized that this operational technique should be modified to meet special situations. In selecting a suitable sample particular care should be taken to assure that a disproportionate fraction of the average dose is not received by the most sensitive population elements. The observations, assumptions, and comments set out in the memorandum published in the FED-ERAL REGISTER, May 18, 1960, are equally applicable to this memorandum.

This memorandum contains recordmendations for the guidance of Federal agencies in activities designed to limit exposure of members of population groups to radiation from radioactive materials deposited in the body as a result of their occurrence in the environment. These recommendations include: (1) Radiation Protection Guides for certain organs of individuals in the general population, as well as averages over suitable samples of exposed groups: (2) guidance on general principles of control applicable to all radionuclides occurring in the environment; and (3) specific guidance in connection with exposure

iodine-131, strontium-90, and strontium-89. It is the intention of the Councll to release the background material leading to these recommendations as Staff Report No. 2 when the recommendations contained herein are approved.

Specific attention was directed to problems associated with radium-226, iodine-131, strontium-90, and strontium-89. Radium-226 is an important naturally occurring radioactive material. The other three were present in fallout from nuclear weapons testing. They could, under certain circumstances, also be major constituents of radioactive materials released to the environment from large scale atomic energy installations used for peaceful purposes. Available data suggest that effective control of these nuclides, in cases of mixed fission. product contamination of the environment, would provide reasonable assurance of at least comparable limitation of hazard from other fission products in the body.

Establishment of the Federal Radia tion Council followed a period of public concern incident to discussions of fallout. While strontium-90 received the greatest popular attention, exposures to cesium-137, iodine-131, strontium-89 and, in still lesser degrees to other radionuclides, are involved in the evaluation of over-all effects. The characteristics of cesium-137 lead to direct comparison with whole body exposures for which recommendations by the Council have already been made.

Studies by the staff of the Council indicate that observed concentrations of radioactive strontium in food and water do not result in concentrations in the skeletor. (and consequently in radiation doses) as large as have been assumed in the past. However, concentrations of iodine-131 in the diets of small children, particularly in milk, equal to those permitted under current standards would lead to radiation doses to the child's thyroid which, in comparison with the general structure of current radiation protection standards, would be too high. This is because current concentration guides for exposure of population groups to radioactive materials in air, food, and water have been derived by application of a single fraction to corresponding occupational guides. In the case of iodine-131 in milk, consumption of milk and retention of iodine by the child may be at least as, great as by the adult, while the relatively small size of the thyroid makes the radiation dose to the thyroid much larger than in the case of the adult. In addition, there is evidence that irradiation of the thyroid involves greater risk to children than to adults.

Recommendations as to Radiation Protection Guides. The Federal Radiation Council has previously emphasized that establishment of radiation protection standards involves a balancing of the benefits to be derived from the controlled use of radiation and atomic energy against the risk of radiation exposure.

of population groups to radium-226. In the development of the Radiation Protection Guides contained herein, the Council has considered both sides of this The Council has reviewed balance. available knowledge, consulted with scientists within and outside the Government, and solicited views of interested individuals and groups from the general public. In particular, the Council has not only drawn heavily upon reports published by the International Commission on Radiological Protection (ICRP), the National Committee on Radiation Protection and Measurements (NCRP), and the National Academy of Sciences (NAS), but has had during the development of the report the benefit of consultation with, and comments and suggestions by, individuals from NCRP and NAS and of their subcommittees. The Radiation Protection Guides recommended below are considered by the Council to represent an appropriate balance between the requirements of health protection and of the beneficial uses of radiation and atomic energy.

It is recommended that:

1. The following Radiation Protection. Guides be adopted for normal peacetime operations.

TABLE I-RADIATION PROTECTION GUIDES FOR CERTAIN BODY ORGANS IN RELATION TO EXPOSURE OF POPULATION GROUPS

Organ	RPG for indi- viduals	RPG for average of suitable sample of expand population group
Thyroid	1.5 rem per year 0.6 rem per year 1.5 rem per year 0.003 mercorams of Ra-22; in the adult skeleton or the biological equivaient of this amount of Ra-22).	0.5 rem per year. 0.17 rem per year. 0.5 rem per year. 0.6 rem per year. 0 fis=02 in the addit switten or the biological equivalent of the amount of Ra-mai.

It will be noted that the preceding table provides Radiation Protection Guides to be applied to the average of a suitable sample of an exposed population group which are one-third of those applying to individuals. This is in accordance with the recommendations in the first report of the Council concerning operational techniques for controlling population exposure. Since in the case of exposure of a population group to radionuclides the radiation doses to individuals are not usually known, the organ dose to be used as a guide for the average of suitable samples of an exposed population group is also given as an RPG.

Recommendations as to general principles. Control of population exposure from radionuclides occurring in the environment is accomplished in general either by restriction on the entry of such materials into the environment or through measures designed to limit the intake by members of the population of radionuclides already in the environment. Both approaches involve the consideration of actual or potential concentrations of radioactive material in air, water, or food. Controls should be based upon an evaluation of population exposure with respect to the RPG. For this purpose, the total daily intake of such materials, averaged over periods of the order of a year, constitutes an appropriate criterion.

The control of the intake by members of the general population of radioactive materials from the environment can appropriately involve many different kinds of actions. The character and import of these actions may vary widely, from those which entail little interference with usual activities, such as monitoring and surveillance, to those which involve a major disruption, such as condemnation of food supplies. Some control actions may require prolonged lead times before becoming effective, e.g., major changes in processing facilities or water supplies. The magnitude of control measures should be related to the degree of likelihood that the RPG may be exceeded. The use of a single numerical intake value, which in part has been the practice until now, does not in many instances provide adequate guidance for taking actions appropriate to the risk involved. For planning purposes, it is desirable that insofar as possible control actions to meet contingencies be known in .advance.

It is recommended that:

2. The radiological health activities of Federal agencies in connection with environmental contamination with radioactive materials be based, within the limits of the agency's statutory responsibilities, on a graded series of appropriate actions related to ranges of intake of radioactive materials by exposed population groups.

In order to provide guidance to the agencies in adapting the graded approach to their own programs, the recommendations pertaining to specific radionuclides in this memorandum consider three transient daily rates. of intake by suitable samples of exposed population groups. For the other radionuclides, the agencies can use the same general approach, the details of which are considered in Staff Report No. 2. The general types of action appropriate when these transient rates of intake fall into the different ranges are also dis-cussed in Staff Report No. 2. The purpose of these actions is to provide reasonable assurance that average rates of intake by a suitable sample can emissed population group, avei-

sample and averaged over periodic consolidate of the order of one year, do not exceed the upper value of Range II. The general character of these actions is suggested in the following table.

TABLE II-ORADED SCALES OF ACTION

Ranges of transient rates of daily intake	Oracled scale of action
Range I	Periodic confirmatory serr- veillance as necessary. Quantitative surveillance and
Range II	Quantitative surveillance and routing control.
Range III	Evaluation and application of additional control measures as necessary.

Recommendations on Ra-226, I-131, Sr-90, and Sr-89. The Council has given specific consideration to the effects on man of rates of intake of radium-226, iodine-131, strontium-90 and strontium-89 resulting in radiation doses equal to those specified in the appropriate RPG's. The Council has also reviewed past and current activities resulting in the release of these radionuclides to the environment and has given consideration to future developments. For each of the nuclides three ranges of transient daily intake are given which correspond to the guidance contained in Recommendation 2, above. Routine control of useful applications of radiation and atomic energy should be such that expected average exposures of suitable samples of an exposed population group will not exceed the upper value of Range II. For iodine-131 and radium-220, this value corresponds to the RPG for the average of a suitable sample of an exposed population group. In the cases of strontium-90 and strontium-89, the Council's study indicated that there is currently no known operational requirement for an intake value as high as the one corresponding the RFG. Hame, a value estimated to correspond to doses to the critical organ not greater than one-third of the RPG has been used.

The guidance recommended below is given in terms of transient rates of (radioactivity) intake in micromicrocuries per day. The upper limit of Range II is based on an annual RPG (or lower. in case of radioactive strontium) considered as an acceptable risk for a lifetime. However, it is necessary to use averages over periods much shorter than a lifetime for both radiation dose rates and rates of intake for administrative and regulators purposes. It is recommended that such periods should be of the order of one year. It is to be noted that values listed in the tables are much smaller than any single intake from which an individual might be expected to sustain It is recommended that:

3. (a) The following guidance on daily intake be adopted for normal peacetime operations to be applied to the average of sultable samples of an exposed population group:

TABLE III—RANGES OF TRANSIENT BATES OF INTAFE (WICHOWINGCURIES PER DAT) FOR USE IN GRADED SCALE OF ACTIONS SOMMARIZED IN TABLE 11.

Radionuclides	Range 1	Range II	Range III .
Radium-22C	0-2	2-20	21-20
Iodine-131 1	0-10	10-100	30-1,00
Strontium-90	(-20	21-240	21-2,00
Strontium-8v	0-20	20-2,000	2,001-2,00

In the case of iodine-121, the sultable sample would include only small children. For additute the IPC for the thyroid would not be exceeded by rates of intake higher by a factor of 10 than those applicable to small children.

(b) Federal agencies determine concentrations of these radionuclides in air, water, or items of food applicable to their particular programs which are consistent with the guidance contained herein on average daily intake for the radionuclides radium-226, iodine-131, strontium-90, and strontium-89. Some of the general considerations involved in the derivation of concentration values from intake values are given in Staff Report No. 2.

It is recommended that:

4. For radionuclides not considered in this report, agencies use concentration values in air, water, or items of food which are consistent with recommended Radiation Protection Guides and the general guidance on intake.

In the future, the Council will direct attention to the development of appropriate radiation protection guidance for those radionuclides for which such consideration appears appropriate or necessary. In particular, the Council will study any radionuclides for which useful applications of radiation or atomic energy require release to the environment of significant amounts of these nuclides. Federal agencies are urged to inform the Council of such situations.

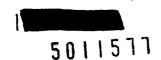
ABRAHAM RIBICOFF,
Chairman,
Federal Radiation Council.

The recommendations numbered "1" through "4" contained in the above memorandum are approved for the guidance of Federal agencies, and the memorandum shall be published in the Federal Register.

JOHN F. KENNEDY.

SEPTEMBER 20, 1961.

TAB


Table 9. Maximum Annual Dose Rate in mrem/y for a Living Pattern Consisting of 100% Time on Eneu Island

Case When Imported Foods are Readily Available in the Diet

•	137Cs+35Sr+	• •		
	Ingestion	External Gamma*	Total	
Bone Marrow	121	20	141	
Wholebody	100	20	120	

Case When Local Substituence Crops are in Full Use

	. ' ພ1			
	Ingestion	External Gamma*	Total	
Bone Marrow	233	20	253	
Wholebody	189	20	2 09	

^{*}All food crops are from Enew Island

^{*}Natural background subtracted

Table 10. Maximum Annual Dose Rate in mrem/y for a Living Pattern Consisting of 80% time on Eneu Island and 20% time on Bikini Island

Case When Imported Foods are Readily Available in the Diet

	137Cs+56Sr ⁴			10%		5%	
	Ingestion	External Game	na*	51e	Total		
Bone Marrow	121	67	44	3 2	188	165	15:
Wholebody	100	67	44	3 2_	167	144	132

Case When Local Subsistence Crops are in Full Use

_	**/Cs+**Sr					
	Ingestion	External Gamma*	Total			
Bone Marrow	233	67 4 4	3 2 300 277 265			
Wholebody	189	67 44	3 2 256 233 221			

Table 11. Maximum Annual Dose Rate in mrem/y for a Living Pattern Consisting of 100% time on Bikini Island

Case When Imported Foods are Readily Available in the Diet

137Cs+50Sr

	Ingestion	External Gamma*	Total
Bone Marrow	941	25 6 .	1,197 ≈ 1.2 rem/y
Wholebody	877	. 256 `	1,133 ≈ 1.1 rem/y

Case When Local Subsistence Crops are in Full Use

117Cs+96Sr

·. ·	Ingestion	External Gamma*	Total
Bone Marrow	2013	256	2,269 ≈ 2.3 rem/y
Wholebody	1849	256	2,105 ≈ 2.1 rem/y

^{*}Local Background Substracted

Table 12. 30-Year Integral Dose in Rem for a Living Pattern Consisting of 100% time on Eneu Island and Imported Foods Being Readily Available

Ingestion	Wholebody	Bone Marrow and Bone
117 _{Cs}	2.25	2.25
**\$r	· ·	0.70
235+240Pu	•	.00045
241 Am		.0012
241 pu/241 Am		0.00058
External Gamma	0.433*	0.433*
Total '	2.7	3.4

^{*}Based on an initial dose rate for Eneu Island of 20 mrem/y and assuming the entire dose is from $^{137}\mathrm{Cs.}$

Table 13. 30 YEAR INTEGRAL DOSE IN Rem FOR A LIVING PATTERN CONSISTING OF 100% TIME ON ENEU ISLAND AND FOR FULL USE OF LOCAL SUBSISTENCE CROPS.

INGESTION		MHOLEBODY	BONE MARRON AND BONE
137 CS	,	4.25	4.25
90 _{Sr}		•	1.5
239+240pu		•	.0008
241Am			.0021
²⁴¹ Pu/ ²⁴¹ Am		•	0.0019
External Gamma		0.433*	0.433*
	TOTAL	4.7	6.2

^{*} Based on an ititial dose rate for Eneu Island of 20 mrem/y and assuming the entire dose is from 137Cs.

Table 14. 30 YEAR INTEGRAL DOSE IN Rem FOR A LIVING PATTERN CONSISTING OF 100 % TIME ON BIKINI ISLAND AND IMPORTED FOODS BEING READILY AVAILABLE.

INGESTION	WHOLEBODY	BONE MARROW AND BONE
137 Cs	19.8	19.8
90 Sr	-	2.2
239+240 _{Pu}	-	.00051
241 _{Am}	- .	.0013
241 Pu/ AM	•	•
External Gamma	5.54*	5.54*
	TOTAL 25.3	27.5

^{*} Based on an initial dose rate of 256 mrem/y and assuming that the entire dose if from 137 Cs.

Table 15. 30 YEAR INTEGRAL DOSE IN Rem FOR A LIVING PATTERN CONSISTING OF 100 % TIME ON BIKINI ISLAND AND FULL USE OF LOCALLY GROWN SUBSISTENCE CROPS.

INGESTION		MHOLEBODY	BONE MARROW AND BONE
137 Cs		41.6	41.7
905r		-	5.6
239+240 Pu		-	.00094
241 Am		-	.0024
241pu/241Am		•	-
External Gamma		5.54*	<u>5.54</u> *
	TOTAL	47.1	52.8

^{*} Based on an initial dose rate of 256 mrem per year and assuming that the entire dose is from 137Cs.

TAB

TE TOO

5011584

LAW OFFICES OF

MICRONESIAN LEGAL SERVICES CORPORATION

ATTORNEYS AND MICRONESIAN COUNSELORS

CABLE ADDRESS: MICROLEX

THEODORE R. MITCHELL

DANIEL H. MACMEEKIN DEPUTY DIRECTOR

JESUS C. BORJA

MIDASY AISEK ALIK J. ALIK IGNACIO ANASTACIO DANIEL E. AQUINO JAMES R. BEDOR MICHAEL J. BERMAN

MARIANO W. CARLOS LYNDON CORNELIUS DELSON S. EHMES FELIX R. FITIAL CHINEINA R. GRAHAM SUNGIWO HADLEY LAR HALPERN IOANES KANICHY ROBERT L. KEOGH JUDITH A. KNAPE CHRISTOPHER LOEAK MICHAEL G. PRITCHARD

JESUS RAGLMAR ANTHOLING K. ROSOKOW · JAMES E. SINDING ALBERT R. SNYDER DONALD C. WOODWORTH

OHER: WACHHOLE

POST OFFICE BOX 269 TAINAN MAHANA ISLANDS 91950 TELEPHONE 6471 OH 6472

PALAL OFFICE POST OFFICE BEA 51 BOROS PALAU WESTERN CAROLINE ISLANDS 96940 TELEPHONE 473

POST OFFICE BOX 198 MAJURO. HARSHALL ISLANDS 96960 TELEPHONE 227 TRUP OFFICE

MARSHALLS DEFICE

MOEN, TRUK. CASTERN CAROLINE ISLANDS 96942

POST OFFICE BOX D TELEPHONE 597

PONATE OFFICE POS* OFF (1.80) (29 HOLDNIA, PONAFE. EASTERN CAROLINE ISLANDS BEGA TELEPHONE 404

MAPIANAS OFFICE POUT OFFICE HON HOE SAIPAN, MARIAGA ISLANDS RESET TELEPHONE 6243

TAR OFFICE POST OFFICE BOX 206 COLONIA YAD WESTERN CAROLINE ISLANDS 96843 TELEPHONE 243

ADSHAE DEFICE POST OFFICE BOX /H LLLU, KOSHAL, CASTERN CAROLINE ISLANDS 96944

WASHINGTON OFFICE 1424 SIXTLENTH STREET, N.W. SUITE 300 WASHINGTON, D.C. 20036 TELEPHONE (202) 232-5021

PLEASE REPLY TO Washington Office

FREEDOM OF INFORMATION ACT REQUEST

August 3, 1979

Mr. Milton Jordan Director Division of FOI and Privacy Acts Activities Department of Energy GB-145 Forrestal Building 1000 Independence Avenue, S.W. Washington, D.C. 20585

Dear Mr. Jordan:

This request is made pursuant to the Freedom of Information Act.

Under date of May 15, 1979, the Assistant Secretary of Environment sent a letter to the Honorable James A. Joseph, Under Secretary of the Interior, having to do with Bikini atoll, Marshall Islands. Attached to the letter is a document entitled "Radiological Implication for Resettlement of Eneu Island." This request relates to that letter and its attachment.

Hereby requested are all documents, records and materials related to the following:

Mr. Milton Jordan August 3, 1979 Page Two

1. On page 1 of the attachment, the following statement appears:

"Based upon previous experience and past practices, however, it is doubtful whether imported food will be a significant part of the daily diet."

Please provide any and all records, materials and documentation for this assertion.

2. On the same page the following statement is made:

"It can also be questioned whether or not access to Bikini Island can be controlled."

Please provide any and all records, documents, reports and materials which form the basis of this assertion.

- 3.1 On page 2 the assertion is made that in August, 1978, the Bikinians "left their Atoll because measurements of radiocesium made in April 1978 showed accumulations in the bodies of 13 out of 101 people such that if this level were maintained for one year, it would result in an annual radiation dose equal to or greater than the 500 mrem/yr federal radiation protection criteria for exposure of individuals." Please provide any and all records, reports, documents or other materials which form the basis of the factual assertions contained in that statement concerning (a) the degree of volition in the departure of the people of Bikini from their atoll, and (b) the measurements of radiocesium in the Bikinians.
- 4. On page 2 of the attachment appears the following statement:

"In early 1979, new information was obtained so that dose predictions for residence on Eneu Island could, for the first time, be based upon data from analysis of actual food items of the Mr. Milton Jordan August 3, 1979 Page Three

diet grown on the island rather than on theoretical predictions derived from soil concentrations."

Please provide a copy of all records, reports, or studies or other documents or materials which form the factual basis for this assertion.

- 5. Regarding the text on page 6 of the attachment which appears at footnote 10, please provide a copy of any study, report or other document which forms the basis of the decision to employ the federal radiation guidance which is taken from the Enewetak Clean-up Environmental Impact Statement of April, 1975. There is no need to provide any materials which are contained in the Environmental Impact Statement. This request is for any additional or other materials.
- 6. Plese provide a copy of the publication relied upon for the calculated dose estimates which is cited at footnote 14 of the attachment, "An Updated Radiological Dose Assessment of Eneu Island at Bikini Atoll," Robison, W.L. and Phillips, W.A., UCRL-52775, 1979.
- 7. Beginning at the foot of page 7, the following statement is found:

"The diets are based on the recent experience and observations of the scientific teams who have been working on Bikini Atoll."

No support is provided in the text or in the footnote for this statement. Please provide any and all records, reports, studies or other documents or materials which describe the "recent experience and observations" and which provide the names of the members of the "scientific teams" referred to in the quoted statement.

8. With respect to the predicted doses presented on page 8 of the attachment, please provide a copy of any and all studies, reports or other documents

Mr. Milton Jordan August 3, 1979 Page Four

> or materials which show the number of fatal cancer cases and the number of genetic malformations to be expected from a dose of 170 millirem per year, and the expected increase in the frequency of such cancer cases and genetic malformations, to be expected for the predicted dose rates presented on page 8 of the attachment. In other words, what is the expected frequency of fatal cancer cases at an average dose rate for the population of 170 millirem per year, compared with, for the whole body, a dose rate of 210 millirem per year, 240 millirem per year, and 260 millirem per year? For another example, what is the expected increase in leukemia cases at 170 millirem per year compared with 190 millirem per year, 260 millirem per year, 280 millirem per year, and 300 millirem per year?

> What is the expected frequency of genetic anomalies at an average whole body dose rate of 5000 millirem per 30 years compared with 2700 millirem, 3200 millirem, 4700 millirem, 5200 millirem and 5700 millirem?

9. Please provide any records, documents and materials which would explain why the attachment and the letter of May 15 did not contain any discussion of the biological risks associated with the predicted doses. If no such documents exist, please so state, and explain why such a discussion was not included in the advice provided to the Department of Interior.

Thank you in advance for your prompt attention to this request.

Chendore Mitchell

xc: Ruth C. Clusen Bruce Wachholz